This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366321 #10 Oct 14 2023 23:55:09 %S A366321 1,3,7,10,13,16,19,21,22,27,28,29,34,36,37,39,43,46,48,52,53,55,57,61, %T A366321 62,64,66,71,75,76,79,81,82,85,87,88,89,90,91,94,100,101,102,107,108, %U A366321 111,113,115,116,117,118,120,129,130,131,133,134,136,138,139,144 %N A366321 Numbers m whose prime indices have even sum k such that k/2 is not a prime index of m. %C A366321 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A366321 The prime indices of 84 are y = {1,1,2,4}, with even sum 8; but 8/2 = 4 is in y, so 84 is not in the sequence. %e A366321 The terms together with their prime indices begin: %e A366321 1: {} %e A366321 3: {2} %e A366321 7: {4} %e A366321 10: {1,3} %e A366321 13: {6} %e A366321 16: {1,1,1,1} %e A366321 19: {8} %e A366321 21: {2,4} %e A366321 22: {1,5} %e A366321 27: {2,2,2} %e A366321 28: {1,1,4} %e A366321 29: {10} %e A366321 34: {1,7} %e A366321 36: {1,1,2,2} %t A366321 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A366321 Select[Range[100],EvenQ[Total[prix[#]]]&&FreeQ[prix[#],Total[prix[#]]/2]&] %Y A366321 Partitions of this type are counted by A182616, strict A365828. %Y A366321 A066207 lists numbers with all even prime indices, odd A066208. %Y A366321 A086543 lists numbers with at least one odd prime index, counted by A366322. %Y A366321 A300063 ranks partitions of odd numbers. %Y A366321 A366319 ranks partitions of n not containing n/2. %Y A366321 A366321 ranks partitions of 2k that do not contain k. %Y A366321 Cf. A000041, A006827, A047967, A320924, A339662, A365825, A365920, A366318, A366528, A366530. %K A366321 nonn %O A366321 0,2 %A A366321 _Gus Wiseman_, Oct 13 2023