cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366322 Heinz numbers of integer partitions containing at least one odd part. Numbers divisible by at least one prime of odd index.

This page as a plain text file.
%I A366322 #5 Oct 14 2023 23:52:49
%S A366322 2,4,5,6,8,10,11,12,14,15,16,17,18,20,22,23,24,25,26,28,30,31,32,33,
%T A366322 34,35,36,38,40,41,42,44,45,46,47,48,50,51,52,54,55,56,58,59,60,62,64,
%U A366322 65,66,67,68,69,70,72,73,74,75,76,77,78,80,82,83,84,85,86
%N A366322 Heinz numbers of integer partitions containing at least one odd part. Numbers divisible by at least one prime of odd index.
%C A366322 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%F A366322 A257991(a(n)) > 0.
%e A366322 The terms together with their prime indices begin:
%e A366322     2: {1}
%e A366322     4: {1,1}
%e A366322     5: {3}
%e A366322     6: {1,2}
%e A366322     8: {1,1,1}
%e A366322    10: {1,3}
%e A366322    11: {5}
%e A366322    12: {1,1,2}
%e A366322    14: {1,4}
%e A366322    15: {2,3}
%e A366322    16: {1,1,1,1}
%e A366322    17: {7}
%e A366322    18: {1,2,2}
%e A366322    20: {1,1,3}
%e A366322    22: {1,5}
%e A366322    23: {9}
%e A366322    24: {1,1,1,2}
%t A366322 Select[Range[100],Or@@OddQ/@PrimePi/@First/@FactorInteger[#]&]
%Y A366322 The complement is A066207, counted by A035363.
%Y A366322 For all odd parts we have A066208, counted by A000009.
%Y A366322 Partitions of this type are counted by A086543.
%Y A366322 For even instead of odd we have A324929, counted by A047967.
%Y A366322 A031368 lists primes of odd index.
%Y A366322 A112798 list prime indices, sum A056239.
%Y A366322 A257991 counts odd prime indices, distinct A324966.
%Y A366322 Cf. A000720, A001222, A003963, A257992, A318400, A324927, A358137.
%K A366322 nonn
%O A366322 1,1
%A A366322 _Gus Wiseman_, Oct 14 2023