This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366322 #5 Oct 14 2023 23:52:49 %S A366322 2,4,5,6,8,10,11,12,14,15,16,17,18,20,22,23,24,25,26,28,30,31,32,33, %T A366322 34,35,36,38,40,41,42,44,45,46,47,48,50,51,52,54,55,56,58,59,60,62,64, %U A366322 65,66,67,68,69,70,72,73,74,75,76,77,78,80,82,83,84,85,86 %N A366322 Heinz numbers of integer partitions containing at least one odd part. Numbers divisible by at least one prime of odd index. %C A366322 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %F A366322 A257991(a(n)) > 0. %e A366322 The terms together with their prime indices begin: %e A366322 2: {1} %e A366322 4: {1,1} %e A366322 5: {3} %e A366322 6: {1,2} %e A366322 8: {1,1,1} %e A366322 10: {1,3} %e A366322 11: {5} %e A366322 12: {1,1,2} %e A366322 14: {1,4} %e A366322 15: {2,3} %e A366322 16: {1,1,1,1} %e A366322 17: {7} %e A366322 18: {1,2,2} %e A366322 20: {1,1,3} %e A366322 22: {1,5} %e A366322 23: {9} %e A366322 24: {1,1,1,2} %t A366322 Select[Range[100],Or@@OddQ/@PrimePi/@First/@FactorInteger[#]&] %Y A366322 The complement is A066207, counted by A035363. %Y A366322 For all odd parts we have A066208, counted by A000009. %Y A366322 Partitions of this type are counted by A086543. %Y A366322 For even instead of odd we have A324929, counted by A047967. %Y A366322 A031368 lists primes of odd index. %Y A366322 A112798 list prime indices, sum A056239. %Y A366322 A257991 counts odd prime indices, distinct A324966. %Y A366322 Cf. A000720, A001222, A003963, A257992, A318400, A324927, A358137. %K A366322 nonn %O A366322 1,1 %A A366322 _Gus Wiseman_, Oct 14 2023