cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366331 Number of main classes of diagonal Latin squares of order 2n+1 that contain a horizontally semicyclic Latin square.

This page as a plain text file.
%I A366331 #18 Dec 12 2023 20:45:34
%S A366331 1,0,1,1,0,2,20,0,272,1208,0,127334,1958084,0
%N A366331 Number of main classes of diagonal Latin squares of order 2n+1 that contain a horizontally semicyclic Latin square.
%C A366331 A horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example).
%H A366331 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1911">About the horizontally and vertically semicyclic diagonal Latin squares enumeration</a> (in Russian).
%H A366331 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_2443">About the spectra of numerical characteristics of different types of cyclic diagonal Latin squares</a> (in Russian).
%H A366331 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_2450">About the number of main classes of semicyclic diagonal Latin squares of order 17</a> (in Russian).
%H A366331 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_2453">About the number of main classes of semicyclic diagonal Latin squares of order 19</a> (in Russian).
%H A366331 Eduard I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_horz_semicyclic_cfs_n5-19.zip">Lists of canonical forms of semicyclic diagonal Latin squares of orders 5-19</a>.
%H A366331 <a href="https://oeis.org/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%e A366331 Example of horizontally semicyclic diagonal Latin square of order 13:
%e A366331    0  1  2  3  4  5  6  7  8  9 10 11 12
%e A366331    2  3  4  5  6  7  8  9 10 11 12  0  1  (d=2)
%e A366331    4  5  6  7  8  9 10 11 12  0  1  2  3  (d=4)
%e A366331    9 10 11 12  0  1  2  3  4  5  6  7  8  (d=9)
%e A366331    7  8  9 10 11 12  0  1  2  3  4  5  6  (d=7)
%e A366331   12  0  1  2  3  4  5  6  7  8  9 10 11  (d=12)
%e A366331    3  4  5  6  7  8  9 10 11 12  0  1  2  (d=3)
%e A366331   11 12  0  1  2  3  4  5  6  7  8  9 10  (d=11)
%e A366331    6  7  8  9 10 11 12  0  1  2  3  4  5  (d=6)
%e A366331    1  2  3  4  5  6  7  8  9 10 11 12  0  (d=1)
%e A366331    5  6  7  8  9 10 11 12  0  1  2  3  4  (d=5)
%e A366331   10 11 12  0  1  2  3  4  5  6  7  8  9  (d=10)
%e A366331    8  9 10 11 12  0  1  2  3  4  5  6  7  (d=8)
%Y A366331 Cf. A071607, A123565, A287764, A338562, A342990, A343866.
%K A366331 nonn,more,hard
%O A366331 0,6
%A A366331 _Eduard I. Vatutin_, Oct 07 2023
%E A366331 a(11)-a(13) from _Andrew Howroyd_, Nov 02 2023