This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366332 #15 Nov 24 2023 17:54:22 %S A366332 1,0,5,27,0,4523,127339,0,204330233,11232045257,0 %N A366332 Minimum number of diagonal transversals in a semicyclic diagonal Latin square of order 2n+1. %C A366332 A horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example). Similarly, a vertically semicyclic diagonal Latin square is a square where each column c(i) is a cyclic shift of the first column c(0) by some value d(i). %H A366332 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_2443">About the spectra of numerical characteristics of different types of cyclic diagonal Latin squsres</a> (in Russian). %H A366332 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_2450">About the spectra of numerical characteristics of semicyclic diagonal Latin squares of order 17</a> (in Russian). %H A366332 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_2453">About the spectra of numerical characteristics of semicyclic diagonal Latin squares of order 19</a> (in Russian). %H A366332 Eduard I. Vatutin, <a href="/A366332/a366332.txt">Proving list (best known examples)</a>. %H A366332 <a href="https://oeis.org/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>. %e A366332 Example of horizontally semicyclic diagonal Latin square of order 13: %e A366332 0 1 2 3 4 5 6 7 8 9 10 11 12 %e A366332 2 3 4 5 6 7 8 9 10 11 12 0 1 (d=2) %e A366332 4 5 6 7 8 9 10 11 12 0 1 2 3 (d=4) %e A366332 9 10 11 12 0 1 2 3 4 5 6 7 8 (d=9) %e A366332 7 8 9 10 11 12 0 1 2 3 4 5 6 (d=7) %e A366332 12 0 1 2 3 4 5 6 7 8 9 10 11 (d=12) %e A366332 3 4 5 6 7 8 9 10 11 12 0 1 2 (d=3) %e A366332 11 12 0 1 2 3 4 5 6 7 8 9 10 (d=11) %e A366332 6 7 8 9 10 11 12 0 1 2 3 4 5 (d=6) %e A366332 1 2 3 4 5 6 7 8 9 10 11 12 0 (d=1) %e A366332 5 6 7 8 9 10 11 12 0 1 2 3 4 (d=5) %e A366332 10 11 12 0 1 2 3 4 5 6 7 8 9 (d=10) %e A366332 8 9 10 11 12 0 1 2 3 4 5 6 7 (d=8) %Y A366332 Cf. A071607, A342990, A342997, A342998, A348212, A366331. %K A366332 nonn,more,hard %O A366332 0,3 %A A366332 _Eduard I. Vatutin_, Oct 07 2023