cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366349 Decimal expansion of the Sum_{k>=1} (-1)^(k+1)*log(2*k)/(2*k).

This page as a plain text file.
%I A366349 #11 Jun 10 2024 07:22:07
%S A366349 1,6,0,2,9,2,0,5,5,0,8,7,8,8,5,2,2,6,4,5,5,0,7,7,3,2,8,0,0,0,8,7,4,2,
%T A366349 0,0,6,1,7,1,6,5,4,6,3,9,1,9,0,4,3,4,2,2,0,9,8,0,1,9,8,0,1,9,9,2,0,0,
%U A366349 4,1,9,0,0,3,7,9,0,2,7,3,3,7,7,0,1,9,6,6,1,4,7,0,5,9,4,0,4,0,1,3,1,9,0,4,1,9
%N A366349 Decimal expansion of the Sum_{k>=1} (-1)^(k+1)*log(2*k)/(2*k).
%C A366349 For Sum_{k>=1} (-1)^(k+1)*log(2*k+1)/(2*k+1) see A078127.
%F A366349 Equals (3*(log(2))^2-2*gamma*log(2))/4, where gamma is Euler gamma constant A001620.
%e A366349 0.16029205508788522645507732800087420061716546391...
%p A366349 (3*(log(2))^2-2*gamma*log(2))/4; evalf(%) ; # _R. J. Mathar_, Jun 10 2024
%t A366349 RealDigits[(3 Log[2]^2 - 2 EulerGamma Log[2])/4, 10, 106][[1]]
%o A366349 (PARI) sumalt(k=1, (-1)^(k+1)*log(2*k)/(2*k)) \\ _Vaclav Kotesovec_, Oct 08 2023
%Y A366349 Cf. A001620, A078127.
%K A366349 nonn,cons
%O A366349 0,2
%A A366349 _Artur Jasinski_, Oct 07 2023