A366355 a(n) = (-1)^n * QPochhammer(n, n, n).
1, 0, 3, 416, 722925, 23205371904, 17674407688984375, 384914699001548351078400, 278893192683059452825059069034425, 7650586837724400321220283274999910891520000, 8900101000088880011112998877890031110997889100010099891
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
Crossrefs
Cf. A023813.
Programs
-
Mathematica
Table[(-1)^n * QPochhammer[n, n, n], {n, 0, 12}] Join[{1}, Table[Product[Sum[n^j, {j, 1, k}], {k, 1, n}] * (1 - 1/n)^n, {n, 1, 12}]]
Formula
For n>0, a(n) = (1 - 1/n)^n * Product_{k=1..n} Sum_{j=1..k} n^j.
a(n) ~ n^(n*(n+1)/2).