A366362 Triangle read by rows: T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x^3 - x^2 - y^2 - y.
1, 0, 4, 5, 0, 4, 0, 8, 0, 8, 21, 0, 0, 0, 4, 0, 20, 0, 0, 0, 16, 40, 0, 0, 0, 0, 0, 9, 0, 32, 0, 16, 0, 0, 0, 16, 45, 0, 24, 0, 0, 0, 0, 0, 12, 0, 84, 0, 0, 0, 0, 0, 0, 0, 16, 111, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 40, 0, 40, 0, 32, 0, 0, 0, 0, 0, 32
Offset: 1
Examples
{ {1}, = 1^2 {0, 4}, = 2^2 {5, 0, 4}, = 3^2 {0, 8, 0, 8}, = 4^2 {21, 0, 0, 0, 4}, = 5^2 {0, 20, 0, 0, 0, 16}, = 6^2 {40, 0, 0, 0, 0, 0, 9}, = 7^2 {0, 32, 0, 16, 0, 0, 0, 16}, = 8^2 {45, 0, 24, 0, 0, 0, 0, 0, 12}, = 9^2 {0, 84, 0, 0, 0, 0, 0, 0, 0, 16}, = 10^2 {111, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10}, = 11^2 {0, 40, 0, 40, 0, 32, 0, 0, 0, 0, 0, 32} = 12^2 }
Programs
-
Mathematica
f = x^3 - x^2 - y^2 - y; nn = 12; Flatten[Table[Table[Sum[Sum[If[GCD[f, n] == k, 1, 0], {x, 1, n}], {y, 1, n}], {k, 1, n}], {n, 1, nn}]]
Formula
T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x^3 - x^2 - y^2 - y.
Conjecture: T(n,n) = A060457(n).
Comments