cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366377 Number of branching factorizations of the primorial inflation of n.

This page as a plain text file.
%I A366377 #15 Jan 03 2024 11:02:41
%S A366377 0,1,3,2,19,11,207,5,62,113,3211,45,64383,1709,911,15,1581259,345,
%T A366377 45948927,645,17753,33797,1541641771,195,9332,822821,2405,12405,
%U A366377 58645296063,6525,2494091717899,51,428309,23765093,223031,1890,117258952478847,793795349,12293957,3585,6038838138717931,154605,338082244882740543,296805
%N A366377 Number of branching factorizations of the primorial inflation of n.
%C A366377 Conjecture: Sequence is injective (no value occurs more than once). If true, then also the conjecture given in A277120 is correct. See also A366884.
%H A366377 Antti Karttunen, <a href="/A366377/b366377.txt">Table of n, a(n) for n = 1..121</a>
%F A366377 a(n) = A277120(A108951(n)).
%F A366377 a(n) = A366884(A329901(n)).
%F A366377 For n >= 1, a(2^n) = A007317(n), a(A000040(n)) = A052886(n).
%o A366377 (PARI)
%o A366377 A002110(n) = prod(i=1,n,prime(i));
%o A366377 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A002110(primepi(f[i, 1]))^f[i, 2]) }; \\ From A108951
%o A366377 memoA277120 = Map();
%o A366377 A277120(n) = if(1==n,0,my(v); if(mapisdefined(memoA277120,n,&v), v, v = 1+sumdiv(n,d,if((1==d)||(d*d)>n,0,if((d*d)==n,1,2)*A277120(d)*A277120(n/d))); mapput(memoA277120,n,v); (v)));
%o A366377 A366377(n) = A277120(A108951(n));
%Y A366377 Cf. A000040, A007317, A052886, A108951, A277120.
%Y A366377 Permutation of A366884.
%K A366377 nonn
%O A366377 1,3
%A A366377 _Antti Karttunen_, Dec 31 2023