cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366388 The number of edges minus the number of leafs in the rooted tree with Matula-Goebel number n.

This page as a plain text file.
%I A366388 #21 Oct 23 2023 15:07:39
%S A366388 0,0,1,0,2,1,1,0,2,2,3,1,2,1,3,0,2,2,1,2,2,3,3,1,4,2,3,1,3,3,4,0,4,2,
%T A366388 3,2,2,1,3,2,3,2,2,3,4,3,4,1,2,4,3,2,1,3,5,1,2,3,3,3,3,4,3,0,4,4,2,2,
%U A366388 4,3,3,2,3,2,5,1,4,3,4,2,4,3,4,2,4,2,4,3,2,4,3,3,5,4,3,1,5,2,5,4,3,3,4,2,4
%N A366388 The number of edges minus the number of leafs in the rooted tree with Matula-Goebel number n.
%C A366388 Number of iterations of A366385 needed to reach the nearest power of 2.
%H A366388 Antti Karttunen, <a href="/A366388/b366388.txt">Table of n, a(n) for n = 1..65537</a>
%H A366388 <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>
%H A366388 <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>
%F A366388 Totally additive with a(2) = 0, and for n > 1, a(prime(n)) = 1 + a(n).
%F A366388 a(n) = A196050(n) - A109129(n).
%F A366388 a(2n) = a(A000265(n)) = a(n).
%e A366388 See illustrations in A061773.
%t A366388 Array[-1 + Length@ NestWhileList[PrimePi[#2]*#1/#2 & @@ {#, FactorInteger[#][[-1, 1]]} &, #, ! IntegerQ@ Log2[#] &] &, 105] (* _Michael De Vlieger_, Oct 23 2023 *)
%o A366388 (PARI) A366388(n) = if(n<=2, 0, if(isprime(n), 1+A366388(primepi(n)), my(f=factor(n)); (apply(A366388, f[, 1])~ * f[, 2])));
%o A366388 (PARI)
%o A366388 A006530(n) = if(1==n, n, my(f=factor(n)); f[#f~, 1]);
%o A366388 A366385(n) = { my(gpf=A006530(n)); primepi(gpf)*(n/gpf); };
%o A366388 A366388(n) = if(n && !bitand(n,n-1),0,1+A366388(A366385(n)));
%Y A366388 Cf. A000720, A006530, A052126, A061395, A061773, A366385.
%Y A366388 Cf. A109129 (gives the exponent of the nearest power of 2 reached), A196050 (distance to the farthest power of 2, which is 1).
%Y A366388 Cf. also A329697, A331410.
%K A366388 nonn
%O A366388 1,5
%A A366388 _Antti Karttunen_, Oct 23 2023