cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366415 a(n) is the number of exterior top arches (no covering arch) for semi-meanders in generation n+1 that are generated by semi-meanders with n top arches and floor(n/2) exterior top arches using the exterior arch splitting algorithm.

This page as a plain text file.
%I A366415 #63 Jul 28 2024 09:20:24
%S A366415 10,34,78,222,362,938,1326,3246,4242,10002,12438,28566,34330,77338,
%T A366415 90654,201246,231458,507938,575526,1251366,1400874,3022890,3350574,
%U A366415 7184430,7897138,16842802,18382902,39026742,42336314,89522234,96600126,203554878
%N A366415 a(n) is the number of exterior top arches (no covering arch) for semi-meanders in generation n+1 that are generated by semi-meanders with n top arches and floor(n/2) exterior top arches using the exterior arch splitting algorithm.
%C A366415 b(n) = ((n-4)*2^floor((n-1)/2)+2)*floor(n/2) is the number of exterior top arches for all semi-meander solutions with n top arches and floor(n/2) exterior top arches. Conjecture: for n>=5, lim_{n->oo} a(n)/b(n) = 3.
%H A366415 Paolo Xausa, <a href="/A366415/b366415.txt">Table of n, a(n) for n = 4..1000</a>
%H A366415 Michael LaCroix, <a href="https://www.math.uwaterloo.ca/~malacroi/Latex/Meanders.pdf">Approaches to the Enumerative Theory of Meanders</a>, 2003, pg. 31-31, Demonstrates arch splitting with semi-meander models.
%H A366415 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,7,-7,-18,18,20,-20,-8,8).
%F A366415 For n>2:
%F A366415 a(2*n) = (3*n-1)*((2*n-4)*2^(n-1) + 2) - (3*n-3)*((2*n-5)*2^(n-1) + 2) + a(2*n-1);
%F A366415 a(2*n+1) = 3*n*((2*n-3)*2^n + 2) - 3*n*((2*n-4)*2^(n-1) + 2) + a(2*n).
%F A366415 G.f.: 2*x^4*(5 + 12*x - 13*x^2 - 12*x^3 + 6*x^4)/((1 - x)^2*(1 + x)*(1 - 2*x^2)^3). - _Stefano Spezia_, Nov 07 2023
%e A366415 For n=5, the number of semi-meanders with 5 top arches and 2 exterior top arches is equal to A259689(5,2) = 6:
%e A366415      __                                __
%e A366415     //\\          __        ____      //\\        __          ____
%e A366415    ///\\\    __  //\\      /  /\\    ///\\\      //\\  __    //\  \
%e A366415 /\////\\\\, //\\///\\\, /\//\//\\\, ////\\\\/\, ///\\\//\\, ///\\/\\/\
%e A366415 There are 12 exterior arches for the 6 solutions.
%e A366415 Solutions for generation n+1 using the exterior arch splitting algorithm:
%e A366415       __
%e A366415      //\\                        __                      ____
%e A366415     ///\\\         __           //\\     __             /____\
%e A366415    ////\\\\   __  //\\         ///\\\   //\\  __       //  __\\   __    __
%e A366415 /\/////\\\\\,//\\///\\\/\,/\/\////\\\\,///\\\//\\/\,/\///\//\\\\,//\\/\//\\/\
%e A366415     __
%e A366415    //\\                      __                        ____
%e A366415   ///\\\         __         //\\               __     /____\
%e A366415  ////\\\\       //\\  __   ///\\\         __  //\\   //__  \\       __    __
%e A366415 /////\\\\\/\,/\///\\\//\\,////\\\\/\/\,/\//\\///\\\,////\\/\\\/\,/\//\\/\//\\
%e A366415 These 12 solutions have 34 exterior arches. Therefore a(5) = 34.
%t A366415 LinearRecurrence[{1, 7, -7, -18, 18, 20, -20, -8, 8}, {10, 34, 78, 222, 362, 938, 1326, 3246, 4242}, 50] (* _Paolo Xausa_, May 28 2024 *)
%Y A366415 Cf. A259689, A365679.
%K A366415 nonn,easy
%O A366415 4,1
%A A366415 _Roger Ford_, Oct 10 2023