This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366415 #63 Jul 28 2024 09:20:24 %S A366415 10,34,78,222,362,938,1326,3246,4242,10002,12438,28566,34330,77338, %T A366415 90654,201246,231458,507938,575526,1251366,1400874,3022890,3350574, %U A366415 7184430,7897138,16842802,18382902,39026742,42336314,89522234,96600126,203554878 %N A366415 a(n) is the number of exterior top arches (no covering arch) for semi-meanders in generation n+1 that are generated by semi-meanders with n top arches and floor(n/2) exterior top arches using the exterior arch splitting algorithm. %C A366415 b(n) = ((n-4)*2^floor((n-1)/2)+2)*floor(n/2) is the number of exterior top arches for all semi-meander solutions with n top arches and floor(n/2) exterior top arches. Conjecture: for n>=5, lim_{n->oo} a(n)/b(n) = 3. %H A366415 Paolo Xausa, <a href="/A366415/b366415.txt">Table of n, a(n) for n = 4..1000</a> %H A366415 Michael LaCroix, <a href="https://www.math.uwaterloo.ca/~malacroi/Latex/Meanders.pdf">Approaches to the Enumerative Theory of Meanders</a>, 2003, pg. 31-31, Demonstrates arch splitting with semi-meander models. %H A366415 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,7,-7,-18,18,20,-20,-8,8). %F A366415 For n>2: %F A366415 a(2*n) = (3*n-1)*((2*n-4)*2^(n-1) + 2) - (3*n-3)*((2*n-5)*2^(n-1) + 2) + a(2*n-1); %F A366415 a(2*n+1) = 3*n*((2*n-3)*2^n + 2) - 3*n*((2*n-4)*2^(n-1) + 2) + a(2*n). %F A366415 G.f.: 2*x^4*(5 + 12*x - 13*x^2 - 12*x^3 + 6*x^4)/((1 - x)^2*(1 + x)*(1 - 2*x^2)^3). - _Stefano Spezia_, Nov 07 2023 %e A366415 For n=5, the number of semi-meanders with 5 top arches and 2 exterior top arches is equal to A259689(5,2) = 6: %e A366415 __ __ %e A366415 //\\ __ ____ //\\ __ ____ %e A366415 ///\\\ __ //\\ / /\\ ///\\\ //\\ __ //\ \ %e A366415 /\////\\\\, //\\///\\\, /\//\//\\\, ////\\\\/\, ///\\\//\\, ///\\/\\/\ %e A366415 There are 12 exterior arches for the 6 solutions. %e A366415 Solutions for generation n+1 using the exterior arch splitting algorithm: %e A366415 __ %e A366415 //\\ __ ____ %e A366415 ///\\\ __ //\\ __ /____\ %e A366415 ////\\\\ __ //\\ ///\\\ //\\ __ // __\\ __ __ %e A366415 /\/////\\\\\,//\\///\\\/\,/\/\////\\\\,///\\\//\\/\,/\///\//\\\\,//\\/\//\\/\ %e A366415 __ %e A366415 //\\ __ ____ %e A366415 ///\\\ __ //\\ __ /____\ %e A366415 ////\\\\ //\\ __ ///\\\ __ //\\ //__ \\ __ __ %e A366415 /////\\\\\/\,/\///\\\//\\,////\\\\/\/\,/\//\\///\\\,////\\/\\\/\,/\//\\/\//\\ %e A366415 These 12 solutions have 34 exterior arches. Therefore a(5) = 34. %t A366415 LinearRecurrence[{1, 7, -7, -18, 18, 20, -20, -8, 8}, {10, 34, 78, 222, 362, 938, 1326, 3246, 4242}, 50] (* _Paolo Xausa_, May 28 2024 *) %Y A366415 Cf. A259689, A365679. %K A366415 nonn,easy %O A366415 4,1 %A A366415 _Roger Ford_, Oct 10 2023