This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366416 #61 Mar 28 2025 03:26:16 %S A366416 11,11,1114111,111181111,111110611111,1111118111111,111111151111111, %T A366416 111111110911111111,1111111111111111111,1111111111111111111, %U A366416 1111111111111111111,1111111111111111111,1111111111111111111,1111111111111111111,1111111111111111111,1111111111111111111,1111111111111111111 %N A366416 a(n) is the first prime that starts and ends with at least n 1's (in base 10). %C A366416 The initial and final strings of 1's are allowed to overlap. %C A366416 If k is in A004023 and (k+1)/2 <= j <= k, then a(j) = (10^k-1)/9 (unless it is (10^i-1)/9 for some i < k where i is in A004023 and (i+1)/2 <= j <= i). %H A366416 Robert Israel, <a href="/A366416/b366416.txt">Table of n, a(n) for n = 1..495</a> %H A366416 S. Dutta et al, <a href="https://math.stackexchange.com/questions/4784494/infinitely-many-primes-of-the-form-underbrace11-dots-1-k-text-times-dot">Infinitely many primes of the form 11...1 (k times) ... 11...1 (k times)</a>, Mathematics StackExchange %e A366416 a(3) = 1114111 which is prime and starts and ends with 3 1's. %p A366416 f:= proc(n) local x,s,d; %p A366416 for d from n to 2*n-1 do %p A366416 if isprime((10^d-1)/9) then return (10^d-1)/9 fi %p A366416 od; %p A366416 s:= (10^n-1)/9; %p A366416 for d from n do %p A366416 for x from 10^d*s + s by 10^n to 10^d*(s+1) do %p A366416 if isprime(x) then return x fi %p A366416 od od %p A366416 end proc: %p A366416 map(f, [$1..20]); %o A366416 (Python) %o A366416 from gmpy2 import is_prime %o A366416 def a(n): %o A366416 t = (10**n-1)//9 %o A366416 for d in range(n, 2*n): %o A366416 if is_prime(t): return t %o A366416 t = 10*t + 1 %o A366416 suffix = (10**n-1)//9 %o A366416 d = 2*n %o A366416 while True: %o A366416 prefix = 10**(d-n)*suffix %o A366416 for mid in range(0,10**(d-n),10**n): %o A366416 t = prefix + mid + suffix %o A366416 if is_prime(t): return t %o A366416 d += 1 %o A366416 print([a(n) for n in range(1,18)]) # _Michael S. Branicky_, Oct 10 2023 %Y A366416 Cf. A004023, A068160. %K A366416 nonn,base,look %O A366416 1,1 %A A366416 _Robert Israel_, Oct 10 2023