cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A367421 Numbers k such that k^5*2^k + 1 is a prime.

Original entry on oeis.org

1, 41, 53, 231, 532, 1632, 1642, 9701, 13372, 19613, 25518, 31929, 92476, 97433
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 18 2023

Keywords

Crossrefs

Numbers k such that k^m*2^k + 1 is a prime: 0, 1, 2, 4, 8, 16, .. (m = 0), A005849 (m = 1), A058780 (m = 2), A357612 (m = 3), A366422 (m = 4), this sequence (m = 5).

Programs

  • Magma
    [k: k in [1..1000] | IsPrime(k^5*2^k+1)];
  • Mathematica
    Select[Range[2000], PrimeQ[#^5*2^# + 1] &] (* Amiram Eldar, Nov 18 2023 *)

Extensions

a(10)-a(12) from Michael S. Branicky, Nov 18 2023
a(13)-a(14) from Michael S. Branicky, Aug 26 2024

A367287 Numbers k such that k^6*2^k + 1 is a prime.

Original entry on oeis.org

1, 2, 4, 62, 80, 122, 136, 658, 1918, 2998, 3404, 4042, 5678, 8378, 10438, 23530, 24610, 29090, 41650, 120818
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 21 2023

Keywords

Comments

No further terms <= 100000. - Michael S. Branicky, Nov 22 2023

Crossrefs

Numbers k such that k^m*2^k + 1 is a prime: 0, 1, 2, 4, 8, 16, .. (m = 0), A005849 (m = 1), A058780 (m = 2), A357612 (m = 3), A366422 (m = 4), A367421 (m = 5), this sequence (m = 6).
Cf. A367478.

Programs

  • Magma
    [k: k in [1..1000] | IsPrime(k^6*2^k + 1)];

Extensions

a(16)-a(19) from Michael S. Branicky, Nov 21 2023
a(20) from Michael S. Branicky, Aug 30 2024

A367560 Numbers k such that k^7*2^k + 1 is a prime.

Original entry on oeis.org

1, 3, 11, 51, 76, 123, 149, 274, 311, 328, 381, 639, 737, 898, 1156, 9017, 13200, 18348, 26388, 30081
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 22 2023

Keywords

Comments

No further terms <= 100000. - Michael S. Branicky, Aug 28 2024

Crossrefs

Numbers k such that k^m*2^k + 1 is a prime: 0, 1, 2, 4, 8, 16, .. (m = 0), A005849 (m = 1), A058780 (m = 2), A357612 (m = 3), A366422 (m = 4), A367421 (m = 5), A367287 (m = 6), this sequence (m = 7).
Cf. A092506.

Programs

  • Magma
    [k: k in [1..2000] | IsPrime(k^7*2^k+1)];

Extensions

a(18)-a(20) from Michael S. Branicky, Nov 22 2023
Showing 1-3 of 3 results.