cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366423 Multiplicative with a(p^e) = p^(e+1-p) if p|e, and p^(e+1) otherwise.

Original entry on oeis.org

1, 4, 9, 2, 25, 36, 49, 16, 27, 100, 121, 18, 169, 196, 225, 8, 289, 108, 361, 50, 441, 484, 529, 144, 125, 676, 3, 98, 841, 900, 961, 64, 1089, 1156, 1225, 54, 1369, 1444, 1521, 400, 1681, 1764, 1849, 242, 675, 2116, 2209, 72, 343, 500, 2601, 338, 2809, 12, 3025
Offset: 1

Views

Author

Amiram Eldar, Nov 17 2023

Keywords

Comments

A permutation of the positive integers. 1 is the only fixed point.
a(n) is a powerful number (A001694) if and only if n is not in A100717.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(e + 1 + If[Mod[e, p] == 0, -p, 0]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(f[i,2] + 1 + if(!(f[i,2]%f[i,1]), -f[i,1])));}

Formula

a(2^e) = 2^A103889(e).
a(3^e) = 3^A130508(e).
A007947(a(n)) = A007947(n).
a(A051674(n)) = A000040(n).
a(n) is squarefree (A005117) if and only if n is in A048102.
a(A048102(n)) = A007947(A048102(n)).
a(n) == 0 (mod n) if and only if n is not in A342090.
a(n) | n if and only if n is in A072873.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Product_{p prime} (1 - 1/p + 1/(1 + p) - (p-1)/(p^p * (1 + p^p))) = 0.660264348361... .