cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366435 G.f. A(x) satisfies A(x) = 1 + x * ((1 - x) / A(x))^(5/2).

This page as a plain text file.
%I A366435 #10 Oct 10 2023 05:09:04
%S A366435 1,1,-5,25,-160,1150,-8851,71345,-594530,5080300,-44272760,391961328,
%T A366435 -3515490820,31874449160,-291676084205,2690284784605,-24985250240043,
%U A366435 233447554879855,-2192862233710505,20696454624488125,-196168344717398010,1866499116495323946
%N A366435 G.f. A(x) satisfies A(x) = 1 + x * ((1 - x) / A(x))^(5/2).
%F A366435 a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(7*k/2-1,k) * binomial(5*k/2,n-k) / (7*k/2-1).
%o A366435 (PARI) a(n) = (-1)^(n-1)*sum(k=0, n, binomial(7*k/2-1, k)*binomial(5*k/2, n-k)/(7*k/2-1));
%Y A366435 Partial sums give A366405.
%Y A366435 Cf. A366431, A366432, A366433, A366434, A366436, A366437.
%K A366435 sign
%O A366435 0,3
%A A366435 _Seiichi Manyama_, Oct 09 2023