This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366438 #15 Oct 11 2023 18:23:42 %S A366438 1,2,2,2,4,2,4,4,2,2,4,4,2,2,4,4,2,8,4,4,2,8,2,6,4,4,4,2,4,4,8,2,8,2, %T A366438 4,2,4,2,8,4,8,4,4,2,2,4,4,8,2,4,8,2,2,4,4,8,2,4,2,4,4,4,8,2,4,4,4,4, %U A366438 12,2,2,8,2,8,8,4,2,2,8,4,2,8,4,4,4,16,4 %N A366438 The number of divisors of the exponentially odd numbers (A268335). %C A366438 1 is the only odd term in this sequence. %H A366438 Amiram Eldar, <a href="/A366438/b366438.txt">Table of n, a(n) for n = 1..10000</a> %F A366438 a(n) = A000005(A268335(n)). %t A366438 f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, OddQ], Times @@ (e + 1), Nothing]]; f[1] = 1; Array[f, 150] %o A366438 (PARI) lista(max) = for(k = 1, max, my(e = factor(k)[, 2], isexpodd = 1); for(i = 1, #e, if(!(e[i] % 2), isexpodd = 0; break)); if(isexpodd, print1(vecprod(apply(x -> x+1, e)), ", "))); %o A366438 (Python) %o A366438 from math import prod %o A366438 from itertools import count, islice %o A366438 from sympy import factorint %o A366438 def A366438_gen(): # generator of terms %o A366438 for n in count(1): %o A366438 f = factorint(n).values() %o A366438 if all(e&1 for e in f): %o A366438 yield prod(e+1 for e in f) %o A366438 A366438_list = list(islice(A366438_gen(),30)) # _Chai Wah Wu_, Oct 10 2023 %Y A366438 Cf. A000005, A268335, A366439. %Y A366438 Similar sequences: A048691, A072048, A076400, A358040, A363194, A363195. %K A366438 nonn,easy %O A366438 1,2 %A A366438 _Amiram Eldar_, Oct 10 2023