cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366438 The number of divisors of the exponentially odd numbers (A268335).

This page as a plain text file.
%I A366438 #15 Oct 11 2023 18:23:42
%S A366438 1,2,2,2,4,2,4,4,2,2,4,4,2,2,4,4,2,8,4,4,2,8,2,6,4,4,4,2,4,4,8,2,8,2,
%T A366438 4,2,4,2,8,4,8,4,4,2,2,4,4,8,2,4,8,2,2,4,4,8,2,4,2,4,4,4,8,2,4,4,4,4,
%U A366438 12,2,2,8,2,8,8,4,2,2,8,4,2,8,4,4,4,16,4
%N A366438 The number of divisors of the exponentially odd numbers (A268335).
%C A366438 1 is the only odd term in this sequence.
%H A366438 Amiram Eldar, <a href="/A366438/b366438.txt">Table of n, a(n) for n = 1..10000</a>
%F A366438 a(n) = A000005(A268335(n)).
%t A366438 f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, OddQ], Times @@ (e + 1), Nothing]]; f[1] = 1; Array[f, 150]
%o A366438 (PARI) lista(max) = for(k = 1, max, my(e = factor(k)[, 2], isexpodd = 1); for(i = 1, #e, if(!(e[i] % 2), isexpodd = 0; break)); if(isexpodd, print1(vecprod(apply(x -> x+1, e)), ", ")));
%o A366438 (Python)
%o A366438 from math import prod
%o A366438 from itertools import count, islice
%o A366438 from sympy import factorint
%o A366438 def A366438_gen(): # generator of terms
%o A366438     for n in count(1):
%o A366438         f = factorint(n).values()
%o A366438         if all(e&1 for e in f):
%o A366438             yield prod(e+1 for e in f)
%o A366438 A366438_list = list(islice(A366438_gen(),30)) # _Chai Wah Wu_, Oct 10 2023
%Y A366438 Cf. A000005, A268335, A366439.
%Y A366438 Similar sequences: A048691, A072048, A076400, A358040, A363194, A363195.
%K A366438 nonn,easy
%O A366438 1,2
%A A366438 _Amiram Eldar_, Oct 10 2023