cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366439 The sum of divisors of the exponentially odd numbers (A268335).

This page as a plain text file.
%I A366439 #10 Oct 11 2023 18:23:56
%S A366439 1,3,4,6,12,8,15,18,12,14,24,24,18,20,32,36,24,60,42,40,30,72,32,63,
%T A366439 48,54,48,38,60,56,90,42,96,44,72,48,72,54,120,72,120,80,90,60,62,96,
%U A366439 84,144,68,96,144,72,74,114,96,168,80,126,84,108,132,120,180,90
%N A366439 The sum of divisors of the exponentially odd numbers (A268335).
%H A366439 Amiram Eldar, <a href="/A366439/b366439.txt">Table of n, a(n) for n = 1..10000</a>
%F A366439 a(n) = A000203(A268335(n)).
%F A366439 Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/(2*d^2)) * Product_{p prime} (1 + 1/(p^5-p)) = 1.045911669131479732932..., where d = 0.7044422... (A065463) is the asymptotic density of the exponentially odd numbers.
%F A366439 The asymptotic mean of the abundancy index of the exponentially odd numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A268335(k) = (1/d) * Product_{p prime} (1 + 1/(p^5-p)) = 2 * c * d = 1.4735686365073812503199... .
%t A366439 f[p_, e_] := (p^(e+1)-1)/(p-1); s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;;, 2]], OddQ], Times @@ f @@@ fct, Nothing]]; s[1] = 1; Array[s, 100]
%o A366439 (PARI) lista(max) = for(k = 1, max, my(f = factor(k), isexpodd = 1); for(i = 1, #f~, if(!(f[i, 2] % 2), isexpodd = 0; break)); if(isexpodd, print1(sigma(f), ", ")));
%o A366439 (Python)
%o A366439 from math import prod
%o A366439 from itertools import count, islice
%o A366439 from sympy import factorint
%o A366439 def A366439_gen(): # generator of terms
%o A366439     for n in count(1):
%o A366439         f = factorint(n)
%o A366439         if all(e&1 for e in f.values()):
%o A366439             yield prod((p**(e+1)-1)//(p-1) for p,e in f.items())
%o A366439 A366439_list = list(islice(A366439_gen(),30)) # _Chai Wah Wu_, Oct 11 2023
%Y A366439 Cf. A000203, A065463, A268335, A366438.
%Y A366439 Similar sequences: A062822, A065764, A180114, A362986, A366440.
%K A366439 nonn,easy
%O A366439 1,2
%A A366439 _Amiram Eldar_, Oct 10 2023