A366440 The sum of divisors of the cubefree numbers (A004709).
1, 3, 4, 7, 6, 12, 8, 13, 18, 12, 28, 14, 24, 24, 18, 39, 20, 42, 32, 36, 24, 31, 42, 56, 30, 72, 32, 48, 54, 48, 91, 38, 60, 56, 42, 96, 44, 84, 78, 72, 48, 57, 93, 72, 98, 54, 72, 80, 90, 60, 168, 62, 96, 104, 84, 144, 68, 126, 96, 144, 72, 74, 114, 124, 140
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Rafael Jakimczuk and Matilde LalĂn, Asymptotics of sums of divisor functions over sequences with restricted factorization structure, Notes on Number Theory and Discrete Mathematics, Vol. 28, No. 4 (2022), pp. 617-634; p. 619, eq. (2).
Crossrefs
Programs
-
Mathematica
f[p_, e_] := (p^(e+1)-1)/(p-1); s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;;, 2]], # < 3 &], Times @@ f @@@ fct, Nothing]]; s[1] = 1; Array[s, 100]
-
PARI
lista(max) = for(k = 1, max, my(f = factor(k), iscubefree = 1); for(i = 1, #f~, if(f[i, 2] > 2, iscubefree = 0; break)); if(iscubefree, print1(sigma(f), ", ")));
-
Python
from sympy import mobius, integer_nthroot, divisor_sigma def A366440(n): def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return divisor_sigma(m) # Chai Wah Wu, Aug 06 2024