A366442 The sum of divisors of the 5-rough numbers (A007310).
1, 6, 8, 12, 14, 18, 20, 24, 31, 30, 32, 48, 38, 42, 44, 48, 57, 54, 72, 60, 62, 84, 68, 72, 74, 96, 80, 84, 108, 90, 112, 120, 98, 102, 104, 108, 110, 114, 144, 144, 133, 156, 128, 132, 160, 138, 140, 168, 180, 150, 152, 192, 158, 192, 164, 168, 183, 174, 248
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a[n_] := DivisorSigma[1, 2*Floor[3*n/2] - 1]; Array[a, 100]
-
PARI
a(n) = sigma((3*n)\2 << 1 - 1)
-
Python
from sympy import divisor_sigma def A366442(n): return divisor_sigma((n+(n>>1)<<1)-1) # Chai Wah Wu, Oct 10 2023
Formula
Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(2) = 1.644934... (A013661).
The asymptotic mean of the abundancy index of the 5-rough numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A007310(k) = Pi^2/9 = 1.0966227... (A100044).
In general, the asymptotic mean of the abundancy index of the prime(k)-rough numbers is zeta(2) * Product_{i=1..k-1} (1 - 1/prime(i)^2).