cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366447 Number of commutative discrete aggregation functions defined on the finite chain L_n={0,1,...,n-1,n}.

This page as a plain text file.
%I A366447 #11 Nov 18 2023 17:10:46
%S A366447 2,20,436,20328,2031458,437195902,203480382352,205483944581920,
%T A366447 451366246767611480,2160705231357646411125,22573295655756312398175000,
%U A366447 515221804925867786482305225000,25712664286501013077919242976580000,2807516217865237733692455994521326628000
%N A366447 Number of commutative discrete aggregation functions defined on the finite chain L_n={0,1,...,n-1,n}.
%C A366447 The number of commutative discrete aggregation functions on the finite chain L_n={0,1,...,n-1,n}, i.e., the number of monotonic increasing binary functions F: L_n^2->L_n such that F(x,y)=F(y,x) for all x,y in L_n, F(0,0)=0 and F(n,n)=n.
%H A366447 M. Munar, S. Massanet and D. Ruiz-Aguilera, <a href="https://doi.org/10.1016/j.ins.2022.10.121">On the cardinality of some families of discrete connectives</a>, Information Sciences, 621 (2023), 708-728.
%F A366447 a(n) = Product_{i=1..n+1}((2i+n-1)/(2i-1) Product_{j=i+1..n+1}((i+j+n-1)/(i+j-1))) - 2*Product_{i=1..n+1}((2i+n-2)/(2i-1) Product_{j=i+1..n+1}((i+j+n-2)/(i+j-1))) + Product_{i=1..n+1}((2i+n-3)/(2i-1) Product_{j=i+1..n+1}((i+j+n-3)/(i+j-1)))
%F A366447 From _Vaclav Kotesovec_, Nov 18 2023: (Start)
%F A366447 a(n) = BarnesG(n+1)^(3/2) * sqrt(BarnesG(3*n)) * Gamma(3*n) * (2*(n-1) * Gamma(n/2) * Gamma(2*n)^2 - 3*2^(n+2) * Gamma(3*n/2) * Gamma(2*n) * Gamma(n+1) + 3*(3*n+1) * Gamma(n/2) * Gamma(n) * Gamma(3*n)) / (4*(2*n + 1) * BarnesG(2*n)^(3/2) * sqrt(2*Gamma(n/2) * Gamma(3*n/2)) * Gamma(2*n)^4).
%F A366447 a(n) ~ exp(1/24) * 3^(9*n^2/4 + 15*n/4 + 35/24) / (sqrt(A) * n^(1/24) * 2^(3*n^2 + 9*n/2 + 17/8)), where A is the Glaisher-Kinkelin constant A074962. (End)
%t A366447 Table[Product[(2*i + n - 1)/(2*i - 1)*
%t A366447     Product[(i + j + n - 1)/(i + j - 1), {j, i + 1, n + 1}], {i, 1,
%t A366447     n + 1}] -
%t A366447   2*Product[(2*i + n - 2)/(2*i - 1)*
%t A366447      Product[(i + j + n - 2)/(i + j - 1), {j, i + 1, n + 1}], {i, 1,
%t A366447      n + 1}] +
%t A366447   Product[(2*i + n - 3)/(2*i - 1)*
%t A366447     Product[(i + j + n - 3)/(i + j - 1), {j, i + 1, n + 1}], {i, 1,
%t A366447     n + 1}], {n, 2, 13}]
%t A366447 Table[BarnesG[n+1]^(3/2) * Sqrt[BarnesG[3*n]] * Gamma[3*n] * (2*(n-1) * Gamma[n/2] * Gamma[2*n]^2 - 3*2^(n+2) * Gamma[3*n/2] * Gamma[2*n] * Gamma[n+1] + 3*(3*n+1) * Gamma[n/2] * Gamma[n] * Gamma[3*n]) / (4*(2*n + 1) * BarnesG[2*n]^(3/2) * Sqrt[2*Gamma[n/2]*Gamma[3*n/2]] * Gamma[2*n]^4), {n, 1, 14}] (* _Vaclav Kotesovec_, Nov 18 2023 *)
%K A366447 nonn
%O A366447 1,1
%A A366447 _Marc Munar_, Oct 10 2023