A366449 Number of smooth discrete aggregation functions defined on the finite chain L_n={0,1,...,n-1,n} having neutral element/absorbing element.
2, 5, 18, 102, 970, 15947, 453872, 22174642, 1846384884, 260939482721, 62454382216334, 25285347265901814, 17304115945924822724, 20008412370393070905186, 39078178288867371807316956, 128893469663525965017925474046, 717867336460661639426421067202992, 6750439274904330523572066561554305664
Offset: 1
Crossrefs
Cf. A005130.
Programs
-
Mathematica
Table[2*Product[Factorial[3 i + 1]/Factorial[n + i], {i, 0, n - 1}] + Sum[Product[Factorial[3 i + 1]/Factorial[a + i], {i, 0, a - 1}]* Product[Factorial[3 i + 1]/Factorial[n - a + i], {i, 0, n - a - 1}], {a, 1, n - 1}], {n, 1, 13}]
Formula
a(n) = 2*Product_{i=0..n-1} (3i+1)!/(n+i)!+ Sum_{a=1..n-1}(Product_{i=0..a-1} (3i+1)!/(a+i)!)*(Product_{i=0..n-a-1} (3i+1)!/(n-a+i)!).
a(n) ~ exp(1/36) * Pi^(1/3) * 3^(3*n^2/2 - 7/36) / (A^(1/3) * Gamma(1/3)^(2/3) * n^(5/36) * 2^(2*n^2 - 17/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 18 2023
Comments