cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366450 a(n) = Sum_{k=1..n} A366362(n,k)*A023900(k)/n.

This page as a plain text file.
%I A366450 #22 Oct 14 2023 14:06:45
%S A366450 1,-2,-1,-4,1,2,-2,-8,-3,-2,1,4,4,4,-1,-16,-2,6,0,-4,2,-2,-1,8,5,-8,
%T A366450 -9,8,0,2,7,-32,-1,4,-2,12,3,0,-4,-8,-8,-4,-6,-4,-3,2,8,16,-14,-10,2,
%U A366450 -16,-6,18,1,16,0,0,5,4,12,-14,6,-64,4,2,-7,8,1,4,-3,24,4,-6,-5,0,-2,8,-10,-16,-27,16,-6,-8
%N A366450 a(n) = Sum_{k=1..n} A366362(n,k)*A023900(k)/n.
%C A366450 It appears that: a(A005117(n)) = A006571(A005117(n)), verified up to n = 98. But also a(76) = A006571(76), a(116) = A006571(116) and a(152) = A006571(152). 76 = 19*2^2, 116 = 29*2^2 and 152 = 19*2^3.
%F A366450 a(n) = Sum_{k=1..n} A366362(n,k)*A023900(k)/n.
%t A366450 nn = 84; f = x^3 - x^2 - y^2 - y; g[n_] := DivisorSum[n, MoebiusMu[#] # &]; Monitor[Table[Sum[Sum[Sum[If[GCD[f, n] == k, 1, 0]*g[k]/n, {x, 1, n}], {y, 1, n}], {k, 1, n}], {n, 1, nn}], n]
%o A366450 (PARI) a(n) = sum(k=1, n, my(z=sumdivmult(k, d, d*moebius(d))); sum(y=1, n, sum(x=1, n, if (gcd(x^3 - x^2 - y^2 - y, n)==k, z/n)))); \\ _Michel Marcus_, Oct 10 2023
%Y A366450 Cf. A366362, A023900, A006571, A005117, A002070, A366362.
%K A366450 sign
%O A366450 1,2
%A A366450 _Mats Granvik_, Oct 10 2023