cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366452 G.f. A(x) satisfies A(x) = 1 + x + x*A(x)^(5/2).

This page as a plain text file.
%I A366452 #16 Apr 04 2024 09:47:26
%S A366452 1,2,5,20,90,440,2266,12110,66525,373320,2130865,12332512,72202860,
%T A366452 426861830,2544727475,15280236800,92333523153,561054410200,
%U A366452 3426075429740,21013974400920,129403499560500,799733464576880,4958649842375975,30837325310579350
%N A366452 G.f. A(x) satisfies A(x) = 1 + x + x*A(x)^(5/2).
%F A366452 G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A366404.
%F A366452 a(n) = Sum_{k=0..n} binomial(3*k/2+1,n-k) * binomial(5*k/2,k) / (3*k/2+1).
%F A366452 G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A259757. - _Seiichi Manyama_, Apr 04 2024
%o A366452 (PARI) a(n) = sum(k=0, n, binomial(3*k/2+1, n-k)*binomial(5*k/2, k)/(3*k/2+1));
%Y A366452 Cf. A112478, A364393, A364407, A364408, A364409, A366266, A366267, A366268, A366453, A366454, A366455, A366456.
%Y A366452 Cf. A259757, A366404.
%K A366452 nonn
%O A366452 0,2
%A A366452 _Seiichi Manyama_, Oct 10 2023