cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366453 G.f. A(x) satisfies A(x) = 1 + x + x*A(x)^(7/2).

This page as a plain text file.
%I A366453 #14 Apr 04 2024 09:47:22
%S A366453 1,2,7,42,287,2142,16898,138600,1170037,10098774,88712736,790540296,
%T A366453 7128879940,64933227996,596523624144,5520761026854,51424824505054,
%U A366453 481741853731110,4535711525840271,42897532229559714,407358615638833341,3882484733036731500
%N A366453 G.f. A(x) satisfies A(x) = 1 + x + x*A(x)^(7/2).
%F A366453 G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A366405.
%F A366453 a(n) = Sum_{k=0..n} binomial(5*k/2+1,n-k) * binomial(7*k/2,k) / (5*k/2+1).
%F A366453 G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A295537. - _Seiichi Manyama_, Apr 04 2024
%o A366453 (PARI) a(n) = sum(k=0, n, binomial(5*k/2+1, n-k)*binomial(7*k/2, k)/(5*k/2+1));
%Y A366453 Cf. A112478, A364393, A364407, A364408, A364409, A366266, A366267, A366268, A366452, A366454, A366455, A366456.
%Y A366453 Cf. A295537, A366405.
%K A366453 nonn
%O A366453 0,2
%A A366453 _Seiichi Manyama_, Oct 10 2023