This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366460 #27 Jan 08 2024 01:39:21 %S A366460 45,63,99,117,153,171,175,207,261,275,279,315,325,333,369,387,423,425, %T A366460 475,477,495,531,539,549,575,585,603,637,639,657,693,711,725,747,765, %U A366460 775,801,819,833,855,873,909,925,927,931,963,981,1017,1025,1035,1071,1075 %N A366460 Odd terms in A366825. %C A366460 Proper subset of A364997, in turn a proper subset of A364996, which is a proper subset of A126706. %C A366460 Prime signature of a(n) is 2 followed by at least one 1. %C A366460 Numbers of the form A065642(k) where k is an odd term in A120944. %C A366460 Numbers of the form p^2 * m, squarefree m > 1, odd prime p < lpf(m), where lpf(m) = A020639(m). %C A366460 The asymptotic density of this sequence is (2/(3*Pi^2)) * Sum_{p odd prime} ((1/p^2) * (Product_{odd primes q <= p} (q/(q+1)))) = 0.0537475047... . - _Amiram Eldar_, Jan 08 2024 %H A366460 Michael De Vlieger, <a href="/A366460/b366460.txt">Table of n, a(n) for n = 1..10000</a> %F A366460 {a(n)} = {A366825 \ A364999}. %e A366460 a(1) = 45 = 9*5 = p^2 * m, squarefree m > 1; sqrt(9) < lpf(5), i.e., 3 < 5. %e A366460 a(2) = 63 = 9*7 = p^2 * m, squarefree m > 1; sqrt(9) < lpf(7), i.e., 3 < 7. %e A366460 Prime powers p^k, k > 2, are not in the sequence since m = p^(k-2) is not squarefree and p = lpf(m). %t A366460 Select[Select[Range[1, 1100, 2], PrimeOmega[#] > PrimeNu[#] > 1 &], And[OddQ[#1], #1/(Times @@ #2) == #2[[1]]] & @@ {#, FactorInteger[#][[All, 1]]} &] %o A366460 (PARI) is(n) = {my(e); n%2 && e = factor(n)[, 2]; #e > 1 && e[1] == 2 && vecmax(e[2..#e]) == 1; } \\ _Amiram Eldar_, Jan 08 2024 %Y A366460 Cf. A007947, A020639, A065642, A120944, A126706, A364996, A364997, A364999. %K A366460 nonn,easy %O A366460 1,1 %A A366460 _Michael De Vlieger_, Jan 05 2024