This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366477 #17 Oct 28 2023 14:40:57 %S A366477 2,3,29,28025,2467754261 %N A366477 a(n) = smallest k such that A366475(k) >= n, or -1 if no such k exists. %t A366477 nn = 2^16; c[_] := False; m[_] := 0; j = 1; c[0] = c[1] = True; q[_] := 0; s = -1; %t A366477 Monitor[Do[p = Prime[n - 1]; r = Mod[j, p]; %t A366477 While[Set[k, p m[p] + r ]; c[k], m[p]++]; %t A366477 (If[q[#] == 0, Set[q[#], n]]; If[# > s, s = #]) &[ m[p] ]; %t A366477 Set[{c[k], j}, {True, k}], {n, 2, nn}], n]; %t A366477 Array[q, s] (* _Michael De Vlieger_, Oct 27 2023 *) %o A366477 (Python) %o A366477 from itertools import count %o A366477 from sympy import nextprime %o A366477 def A366477(n): %o A366477 a, aset, p = 1, {0,1}, 1 %o A366477 for i in count(2): %o A366477 p = nextprime(p) %o A366477 b = a%p %o A366477 for j in count(0): %o A366477 if b not in aset: %o A366477 aset.add(b) %o A366477 a = b %o A366477 break %o A366477 b += p %o A366477 if j>=n: %o A366477 return i # _Chai Wah Wu_, Oct 27 2023 %Y A366477 Cf. A364054, A366475. %K A366477 nonn,more %O A366477 1,1 %A A366477 _N. J. A. Sloane_, Oct 26 2023 %E A366477 a(4) = 28025 from _Michael De Vlieger_, Oct 26 2023, who also reports that 5 does not appear in the first 2^24 terms of A366475. %E A366477 a(5) from _Chai Wah Wu_, Oct 28 2023