This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366494 #38 Apr 09 2024 14:20:39 %S A366494 8,1,1,8,2,1,5,6,2,53,1,4,8,3,1,14,4,1,41,2,16,29,1,34,8,49,1,26,2,7, %T A366494 11,16,4,5,3,2,80,1,1,26,2,1,83,2,14,29,9,2,8,1,1,14,2,27,17,16,2,5,9, %U A366494 2,14,1,25,26,16,1,5,8,14,5,1,2,32,3,5,50,4,17,5,4,4,143 %N A366494 a(n) is the number of cycles of the map f(x) = 10*x mod (10*n - 1). %C A366494 Taking the length of each orbit that starts from f(0)=1 gives the sequence A128858. %C A366494 Equivalently, the number of cyclotomic cosets of 10 mod (10*n - 1). See A006694. %C A366494 Map is the Multiply-with-carry algorithm with a=n, b=10, and c=1. %H A366494 Hillel Wayne, <a href="/A366494/b366494.txt">Table of n, a(n) for n = 1..1002</a> %H A366494 George Marsaglia, <a href="https://doi.org/10.22237/jmasm/1051747320">Random Number Generators</a>, Journal of Modern Applied Statistical Methods, Volume 2, Issue 1 (2003). %H A366494 Kenneth Shum, <a href="https://mypage.cuhk.edu.cn/academics/wkshum/sage/cyclotomic_coset.html">Cyclotomic cosets</a>. %e A366494 For a(4) the 8 cycles are: %e A366494 (1 10 22 25 16 4) %e A366494 (2 20 5 11 32 8) %e A366494 (3 30 27 36 9 12) %e A366494 (6 21 15 33 18 24) %e A366494 (7 31 37 19 34 28) %e A366494 (13) %e A366494 (14 23 35 38 29 17) %e A366494 (26) %o A366494 (Python) %o A366494 def get_num_orbits(n: int) -> int: %o A366494 orbits = 0 %o A366494 mod = 10*n - 1 %o A366494 seen = set() %o A366494 for i in range(1, mod): %o A366494 if i not in seen: %o A366494 seen.add(i) %o A366494 orbits += 1 %o A366494 x = 10*i % mod %o A366494 while x != i: %o A366494 seen.add(x) %o A366494 x = 10*x % mod %o A366494 return orbits %o A366494 (Python) %o A366494 from sympy import totient, n_order, divisors %o A366494 def A366494(n): return sum(totient(d)//n_order(10,d) for d in divisors(10*n-1,generator=True) if d>1) # _Chai Wah Wu_, Apr 09 2024 %o A366494 (PARI) %o A366494 a(n)=sumdiv(10*n-1, d, eulerphi(d)/znorder(Mod(10, d)))-1; %o A366494 vector(100, n, a(n-1)) \\ _Joerg Arndt_, Jan 22 2024 %Y A366494 Cf. A006694, A023142, A128858, A128857. %K A366494 nonn %O A366494 1,1 %A A366494 _Hillel Wayne_, Oct 10 2023