cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366498 G.f. A(x) satisfies A(x) = 1 + x / ((1+x)^(5/2)*A(x)^(3/2)).

This page as a plain text file.
%I A366498 #9 Oct 11 2023 08:42:55
%S A366498 1,1,-4,16,-74,386,-2180,12974,-80087,507887,-3288564,21649068,
%T A366498 -144458484,974838450,-6641303895,45615642021,-315530731215,
%U A366498 2196107692119,-15368596890978,108073850591598,-763293549312084,5412015893523096,-38508964818580799
%N A366498 G.f. A(x) satisfies A(x) = 1 + x / ((1+x)^(5/2)*A(x)^(3/2)).
%F A366498 G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A366431.
%F A366498 a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(n+3*k/2-1,n-k) * binomial(5*k/2-1,k) / (5*k/2-1).
%o A366498 (PARI) a(n) = (-1)^(n-1)*sum(k=0, n, binomial(n+3*k/2-1, n-k)*binomial(5*k/2-1, k)/(5*k/2-1));
%Y A366498 Cf. A001006, A366221, A366272, A366273, A366495, A366496, A366497, A366499, A366500, A366501.
%Y A366498 Cf. A366431.
%K A366498 sign
%O A366498 0,3
%A A366498 _Seiichi Manyama_, Oct 11 2023