This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366502 #40 Jan 19 2025 09:29:46 %S A366502 0,0,0,1,1,1,2,2,3,3,4,5,5,6,6,7,7,8,9,10,11,11,12,14,14,15,16,17,17, %T A366502 19,19,20,21,23,24,25,26,26,27,29,30,31,31,32,33,34,36,37,38,40,41,41, %U A366502 42,44,44,47,47,48,49,52 %N A366502 Let q = A246655(n) for n >= 2, then a(n) = (q - Kronecker(-4,q))/4 - 1. %C A366502 If q is not a power of 2, then a(n) is the number of pairs of consecutive nonzero squares in the finite field F_q. In other words, a(n) is the number of solutions to x^((q-1)/2) = (x+1)^((q-1)/2) = 1 in F_q. This can be proved by generalizing the argument of Jack D'Aurizio to the Math Stack Exchange question "Existence of Consecutive Quadratic residues" to the case of F_q. %H A366502 Jianing Song, <a href="/A366502/b366502.txt">Table of n, a(n) for n = 2..10000</a> %H A366502 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/q/164864">Existence of Consecutive Quadratic residues</a>. %e A366502 a(5) = 1 because there is one pair of consecutive nonzero squares in the finite field F_q with q = A246655(5) = 7, namely {1, 2}. %e A366502 a(7) = 1 because there is one pair of consecutive nonzero squares in the finite field F_q with q = A246655(7) = 9, namely {1, 2} (note that 2 = -1 = i^2 in F_9 = F_3(i)). %o A366502 (PARI) lim_A366502(N) = for(n=3, N, if(isprimepower(n), print1((n - kronecker(-4,n))/4 - 1, ", "))) %o A366502 (Python) %o A366502 from sympy import primepi, integer_nthroot, kronecker_symbol %o A366502 def A366502(n): %o A366502 def bisection(f,kmin=0,kmax=1): %o A366502 while f(kmax) > kmax: kmax <<= 1 %o A366502 while kmax-kmin > 1: %o A366502 kmid = kmax+kmin>>1 %o A366502 if f(kmid) <= kmid: %o A366502 kmax = kmid %o A366502 else: %o A366502 kmin = kmid %o A366502 return kmax %o A366502 def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) %o A366502 return ((m:=bisection(f,n,n))-kronecker_symbol(-4,m)>>2)-1 # _Chai Wah Wu_, Jan 19 2025 %Y A366502 Cf. A246655, A101455 ({kronecker(-4,n)}), A024698. %Y A366502 A015518(n)-1 and A003463(n)-1 are respectively the number of consecutive nonzero squares in F_{3^n} and in F_{5^n}. %K A366502 nonn,easy %O A366502 2,7 %A A366502 _Jianing Song_, Oct 12 2023