A366509 a(n) is the maximum number of dots on the slope of a Ferrers diagram of a partition of n into distinct parts.
1, 1, 2, 1, 2, 3, 2, 2, 3, 4, 2, 3, 3, 4, 5, 3, 3, 4, 4, 5, 6, 4, 4, 4, 5, 5, 6, 7, 4, 5, 5, 5, 6, 6, 7, 8, 5, 5, 6, 6, 6, 7, 7, 8, 9, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 7, 7, 7, 7, 8, 8, 8, 9, 9, 10, 11, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 11, 12, 8, 8, 9, 9, 9, 9, 10
Offset: 1
Keywords
Examples
The Ferrers diagrams for the partitions of n = 7 into distinct parts are: . . (7) (6,1) (5,2) (4,3) (4,2,1) . o o o o o o o o o o o o o o o o o o o o o o o o o o . o o o o o o o o . o . The maximal slope (joining 2 dots) corresponds to the (4,3) partition. For n = 11 there are two diagrams with maximal slope (joining 2 dots): . . o o o o o o o o o o o . o o o o o o o o o . o o . For n = 26 the maximal slope, corresponding to the partition (7,6,5,4,3,1), joins 5 dots: . . o o o o o o o . / . o o o o o o . / . o o o o o . / . o o o o . / . o o o . . o .
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer, New York, NY, 1976, pp. 313-315.
- Eric Weisstein's World of Mathematics, Ferrers Diagram.
Comments