This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366527 #7 Oct 16 2023 13:42:33 %S A366527 0,1,3,7,16,32,62,113,199,339,563,913,1453,2271,3496,5308,7959,11798, %T A366527 17309,25151,36225,51748,73359,103254,144363,200568,277007,380437, %U A366527 519715,706412,955587,1286762,1725186,2303388,3063159,4058041,5356431,7045454,9235841 %N A366527 Number of integer partitions of 2n containing at least one even part. %C A366527 Also partitions of 2n with even product. %F A366527 a(n) = A000041(2n) - A000009(2n). %e A366527 The a(1) = 1 through a(4) = 16 partitions: %e A366527 (2) (4) (6) (8) %e A366527 (22) (42) (44) %e A366527 (211) (222) (62) %e A366527 (321) (332) %e A366527 (411) (422) %e A366527 (2211) (431) %e A366527 (21111) (521) %e A366527 (611) %e A366527 (2222) %e A366527 (3221) %e A366527 (4211) %e A366527 (22211) %e A366527 (32111) %e A366527 (41111) %e A366527 (221111) %e A366527 (2111111) %t A366527 Table[Length[Select[IntegerPartitions[2n],Or@@EvenQ/@#&]],{n,0,15}] %Y A366527 This is the even bisection of A047967. %Y A366527 For odd instead of even parts we have A182616, ranks A366321 or A366528. %Y A366527 These partitions have ranks A366529, subset of A324929. %Y A366527 A000041 counts integer partitions, strict A000009. %Y A366527 A006477 counts partitions w/ at least one odd and even part, ranks A366532. %Y A366527 A086543 counts partitions of n not containing n/2, ranks A366319. %Y A366527 A086543 counts partitions w/o odds, ranks A366322, even bisection A182616. %Y A366527 Cf. A001255, A006827, A035363, A064914, A078408, A086543, A231429, A304710, A365828. %K A366527 nonn %O A366527 0,3 %A A366527 _Gus Wiseman_, Oct 16 2023