cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366527 Number of integer partitions of 2n containing at least one even part.

This page as a plain text file.
%I A366527 #7 Oct 16 2023 13:42:33
%S A366527 0,1,3,7,16,32,62,113,199,339,563,913,1453,2271,3496,5308,7959,11798,
%T A366527 17309,25151,36225,51748,73359,103254,144363,200568,277007,380437,
%U A366527 519715,706412,955587,1286762,1725186,2303388,3063159,4058041,5356431,7045454,9235841
%N A366527 Number of integer partitions of 2n containing at least one even part.
%C A366527 Also partitions of 2n with even product.
%F A366527 a(n) = A000041(2n) - A000009(2n).
%e A366527 The a(1) = 1 through a(4) = 16 partitions:
%e A366527   (2)  (4)    (6)      (8)
%e A366527        (22)   (42)     (44)
%e A366527        (211)  (222)    (62)
%e A366527               (321)    (332)
%e A366527               (411)    (422)
%e A366527               (2211)   (431)
%e A366527               (21111)  (521)
%e A366527                        (611)
%e A366527                        (2222)
%e A366527                        (3221)
%e A366527                        (4211)
%e A366527                        (22211)
%e A366527                        (32111)
%e A366527                        (41111)
%e A366527                        (221111)
%e A366527                        (2111111)
%t A366527 Table[Length[Select[IntegerPartitions[2n],Or@@EvenQ/@#&]],{n,0,15}]
%Y A366527 This is the even bisection of A047967.
%Y A366527 For odd instead of even parts we have A182616, ranks A366321 or A366528.
%Y A366527 These partitions have ranks A366529, subset of A324929.
%Y A366527 A000041 counts integer partitions, strict A000009.
%Y A366527 A006477 counts partitions w/ at least one odd and even part, ranks A366532.
%Y A366527 A086543 counts partitions of n not containing n/2, ranks A366319.
%Y A366527 A086543 counts partitions w/o odds, ranks A366322, even bisection A182616.
%Y A366527 Cf. A001255, A006827, A035363, A064914, A078408, A086543, A231429, A304710, A365828.
%K A366527 nonn
%O A366527 0,3
%A A366527 _Gus Wiseman_, Oct 16 2023