cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366529 Heinz numbers of integer partitions of even numbers with at least one even part.

Original entry on oeis.org

3, 7, 9, 12, 13, 19, 21, 27, 28, 29, 30, 36, 37, 39, 43, 48, 49, 52, 53, 57, 61, 63, 66, 70, 71, 75, 76, 79, 81, 84, 87, 89, 90, 91, 101, 102, 107, 108, 111, 112, 113, 116, 117, 120, 129, 130, 131, 133, 138, 139, 144, 147, 148, 151, 154, 156, 159, 163, 165
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   3: {2}
   7: {4}
   9: {2,2}
  12: {1,1,2}
  13: {6}
  19: {8}
  21: {2,4}
  27: {2,2,2}
  28: {1,1,4}
  29: {10}
  30: {1,2,3}
  36: {1,1,2,2}
  37: {12}
  39: {2,6}
  43: {14}
  48: {1,1,1,1,2}
		

Crossrefs

The complement is counted by A047967.
For all even parts we have A066207, counted by A035363, odd A066208.
Not requiring an even part gives A300061.
For odd instead of even we have A300063.
Not requiring even sum gives A324929.
Partitions of this type are counted by A366527.
A112798 list prime indices, sum A056239.
A257991 counts odd prime indices, distinct A324966.
A257992 counts even prime indices, distinct A324967.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[Total[prix[#]]]&&Or@@EvenQ/@prix[#]&]