This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366530 #7 Oct 16 2023 20:12:41 %S A366530 4,10,12,16,22,25,28,30,34,36,40,46,48,52,55,62,64,66,70,75,76,82,84, %T A366530 85,88,90,94,100,102,108,112,115,116,118,120,121,130,134,136,138,144, %U A366530 146,148,154,155,156,160,165,166,172,175,184,186,187,190,192,194,196 %N A366530 Heinz numbers of integer partitions of even numbers with at least one odd part. %C A366530 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A366530 The terms together with their prime indices are the following. Each multiset has even sum and at least one odd part. %e A366530 4: {1,1} %e A366530 10: {1,3} %e A366530 12: {1,1,2} %e A366530 16: {1,1,1,1} %e A366530 22: {1,5} %e A366530 25: {3,3} %e A366530 28: {1,1,4} %e A366530 30: {1,2,3} %e A366530 34: {1,7} %e A366530 36: {1,1,2,2} %e A366530 40: {1,1,1,3} %e A366530 46: {1,9} %e A366530 48: {1,1,1,1,2} %e A366530 52: {1,1,6} %e A366530 55: {3,5} %e A366530 62: {1,11} %e A366530 64: {1,1,1,1,1,1} %t A366530 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A366530 Select[Range[100], EvenQ[Total[prix[#]]]&&Or@@OddQ/@prix[#]&] %Y A366530 These partitions are counted by A182616, even bisection of A086543. %Y A366530 Not requiring at least one odd part gives A300061. %Y A366530 Allowing partitions of odd numbers gives A366322. %Y A366530 A031368 lists primes of odd index. %Y A366530 A066207 ranks partitions with all even parts, counted by A035363. %Y A366530 A066208 ranks partitions with all odd parts, counted by A000009. %Y A366530 A112798 list prime indices, sum A056239. %Y A366530 A257991 counts odd prime indices, distinct A324966. %Y A366530 Cf. A000720, A001222, A003963, A047967, A257992, A324929, A358137. %K A366530 nonn %O A366530 1,1 %A A366530 _Gus Wiseman_, Oct 16 2023