cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366530 Heinz numbers of integer partitions of even numbers with at least one odd part.

This page as a plain text file.
%I A366530 #7 Oct 16 2023 20:12:41
%S A366530 4,10,12,16,22,25,28,30,34,36,40,46,48,52,55,62,64,66,70,75,76,82,84,
%T A366530 85,88,90,94,100,102,108,112,115,116,118,120,121,130,134,136,138,144,
%U A366530 146,148,154,155,156,160,165,166,172,175,184,186,187,190,192,194,196
%N A366530 Heinz numbers of integer partitions of even numbers with at least one odd part.
%C A366530 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%e A366530 The terms together with their prime indices are the following. Each multiset has even sum and at least one odd part.
%e A366530     4: {1,1}
%e A366530    10: {1,3}
%e A366530    12: {1,1,2}
%e A366530    16: {1,1,1,1}
%e A366530    22: {1,5}
%e A366530    25: {3,3}
%e A366530    28: {1,1,4}
%e A366530    30: {1,2,3}
%e A366530    34: {1,7}
%e A366530    36: {1,1,2,2}
%e A366530    40: {1,1,1,3}
%e A366530    46: {1,9}
%e A366530    48: {1,1,1,1,2}
%e A366530    52: {1,1,6}
%e A366530    55: {3,5}
%e A366530    62: {1,11}
%e A366530    64: {1,1,1,1,1,1}
%t A366530 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A366530 Select[Range[100], EvenQ[Total[prix[#]]]&&Or@@OddQ/@prix[#]&]
%Y A366530 These partitions are counted by A182616, even bisection of A086543.
%Y A366530 Not requiring at least one odd part gives A300061.
%Y A366530 Allowing partitions of odd numbers gives A366322.
%Y A366530 A031368 lists primes of odd index.
%Y A366530 A066207 ranks partitions with all even parts, counted by A035363.
%Y A366530 A066208 ranks partitions with all odd parts, counted by A000009.
%Y A366530 A112798 list prime indices, sum A056239.
%Y A366530 A257991 counts odd prime indices, distinct A324966.
%Y A366530 Cf. A000720, A001222, A003963, A047967, A257992, A324929, A358137.
%K A366530 nonn
%O A366530 1,1
%A A366530 _Gus Wiseman_, Oct 16 2023