cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366532 Heinz numbers of integer partitions with at least one even and odd part.

This page as a plain text file.
%I A366532 #5 Oct 16 2023 23:26:50
%S A366532 6,12,14,15,18,24,26,28,30,33,35,36,38,42,45,48,51,52,54,56,58,60,65,
%T A366532 66,69,70,72,74,75,76,77,78,84,86,90,93,95,96,98,99,102,104,105,106,
%U A366532 108,112,114,116,119,120,122,123,126,130,132,135,138,140,141,142
%N A366532 Heinz numbers of integer partitions with at least one even and odd part.
%C A366532 These partitions are counted by A006477.
%C A366532 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%F A366532 Intersection of A324929 and A366322.
%e A366532 The terms together with their prime indices begin:
%e A366532     6: {1,2}
%e A366532    12: {1,1,2}
%e A366532    14: {1,4}
%e A366532    15: {2,3}
%e A366532    18: {1,2,2}
%e A366532    24: {1,1,1,2}
%e A366532    26: {1,6}
%e A366532    28: {1,1,4}
%e A366532    30: {1,2,3}
%e A366532    33: {2,5}
%e A366532    35: {3,4}
%e A366532    36: {1,1,2,2}
%e A366532    38: {1,8}
%e A366532    42: {1,2,4}
%e A366532    45: {2,2,3}
%e A366532    48: {1,1,1,1,2}
%t A366532 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A366532 Select[Range[100],Or@@EvenQ/@prix[#]&&Or@@OddQ/@prix[#]&]
%Y A366532 These partitions are counted by A006477.
%Y A366532 Just even: A324929, counted by A047967.
%Y A366532 Just odd: A366322, counted by A086543 (even bisection of A182616).
%Y A366532 A031368 lists primes of odd index, even A031215.
%Y A366532 A066207 ranks partitions with all even parts, counted by A035363.
%Y A366532 A066208 ranks partitions with all odd parts, counted by A000009.
%Y A366532 A112798 lists prime indices, sum A056239.
%Y A366532 A257991 counts odd prime indices, distinct A324966.
%Y A366532 A257992 counts even prime indices, distinct A324967.
%Y A366532 Cf. A000720, A001222, A003963, A026804, A244991, A257992.
%K A366532 nonn
%O A366532 1,1
%A A366532 _Gus Wiseman_, Oct 16 2023