cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366535 The sum of unitary divisors of the exponentially odd numbers (A268335).

This page as a plain text file.
%I A366535 #8 Oct 12 2023 09:51:31
%S A366535 1,3,4,6,12,8,9,18,12,14,24,24,18,20,32,36,24,36,42,28,30,72,32,33,48,
%T A366535 54,48,38,60,56,54,42,96,44,72,48,72,54,84,72,72,80,90,60,62,96,84,
%U A366535 144,68,96,144,72,74,114,96,168,80,126,84,108,132,120,108,90,112
%N A366535 The sum of unitary divisors of the exponentially odd numbers (A268335).
%H A366535 Amiram Eldar, <a href="/A366535/b366535.txt">Table of n, a(n) for n = 1..10000</a>
%F A366535 a(n) = A034448(A268335(n)).
%F A366535 Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (zeta(4)/d^2) * Product_{p prime} (1 - 2/p^4 + 1/p^5) = 1.92835521961603199612..., d = A065463 is the asymptotic density of the exponentially odd numbers.
%F A366535 The asymptotic mean of the unitary abundancy index of the exponentially odd numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A268335(k) = c * d = 1.35841479521454692063... .
%t A366535 s[n_] := Module[{f = FactorInteger[n], e}, e = f[[;;, 2]]; If[AllTrue[e, OddQ], Times @@ (1 + Power @@@ f), Nothing]]; s[1] = 1; Array[s, 100]
%o A366535 (PARI) lista(max) = for(k = 1, max, my(f = factor(k), e = f[, 2], isexpodd = 1); for(i = 1, #e, if(!(e[i] % 2), isexpodd = 0; break)); if(isexpodd, print1(prod(i = 1, #e, 1 + f[i, 1]^e[i]), ", ")));
%Y A366535 Cf. A034448, A065463, A077610, A268335, A366439, A366534.
%Y A366535 Similar sequences: A034676, A366537, A366539.
%K A366535 nonn,easy
%O A366535 1,2
%A A366535 _Amiram Eldar_, Oct 12 2023