cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366536 The number of unitary divisors of the cubefree numbers (A004709).

This page as a plain text file.
%I A366536 #17 Aug 05 2024 17:35:50
%S A366536 1,2,2,2,2,4,2,2,4,2,4,2,4,4,2,4,2,4,4,4,2,2,4,4,2,8,2,4,4,4,4,2,4,4,
%T A366536 2,8,2,4,4,4,2,2,4,4,4,2,4,4,4,2,8,2,4,4,4,8,2,4,4,8,2,2,4,4,4,4,8,2,
%U A366536 4,2,8,4,4,4,2,8,4,4,4,4,4,2,4,4,4,2,8
%N A366536 The number of unitary divisors of the cubefree numbers (A004709).
%C A366536 The number of unitary divisors of the squarefree numbers (A005117) is the same as the number of divisors of the squarefree numbers (A072048), because all the divisors of a squarefree number are unitary.
%H A366536 Amiram Eldar, <a href="/A366536/b366536.txt">Table of n, a(n) for n = 1..10000</a>
%F A366536 a(n) = A034444(A004709(n)).
%t A366536 f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, # < 3 &], 2^Length[e], Nothing]]; f[1] = 1; Array[f, 150]
%o A366536 (PARI) lista(max) = for(k = 1, max, my(e = factor(k)[, 2], iscubefree = 1); for(i = 1, #e, if(e[i] > 2, iscubefree = 0; break)); if(iscubefree, print1(2^(#e), ", ")));
%o A366536 (Python)
%o A366536 from sympy.ntheory.factor_ import udivisor_count
%o A366536 from sympy import mobius, integer_nthroot
%o A366536 def A366536(n):
%o A366536     def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
%o A366536     m, k = n, f(n)
%o A366536     while m != k:
%o A366536         m, k = k, f(k)
%o A366536     return udivisor_count(m) # _Chai Wah Wu_, Aug 05 2024
%Y A366536 Cf. A004709, A005117, A034444, A072048, A077610, A358040, A366440, A366537.
%Y A366536 Similar sequences: A366534, A366538.
%K A366536 nonn,easy
%O A366536 1,2
%A A366536 _Amiram Eldar_, Oct 12 2023