This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366536 #17 Aug 05 2024 17:35:50 %S A366536 1,2,2,2,2,4,2,2,4,2,4,2,4,4,2,4,2,4,4,4,2,2,4,4,2,8,2,4,4,4,4,2,4,4, %T A366536 2,8,2,4,4,4,2,2,4,4,4,2,4,4,4,2,8,2,4,4,4,8,2,4,4,8,2,2,4,4,4,4,8,2, %U A366536 4,2,8,4,4,4,2,8,4,4,4,4,4,2,4,4,4,2,8 %N A366536 The number of unitary divisors of the cubefree numbers (A004709). %C A366536 The number of unitary divisors of the squarefree numbers (A005117) is the same as the number of divisors of the squarefree numbers (A072048), because all the divisors of a squarefree number are unitary. %H A366536 Amiram Eldar, <a href="/A366536/b366536.txt">Table of n, a(n) for n = 1..10000</a> %F A366536 a(n) = A034444(A004709(n)). %t A366536 f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, # < 3 &], 2^Length[e], Nothing]]; f[1] = 1; Array[f, 150] %o A366536 (PARI) lista(max) = for(k = 1, max, my(e = factor(k)[, 2], iscubefree = 1); for(i = 1, #e, if(e[i] > 2, iscubefree = 0; break)); if(iscubefree, print1(2^(#e), ", "))); %o A366536 (Python) %o A366536 from sympy.ntheory.factor_ import udivisor_count %o A366536 from sympy import mobius, integer_nthroot %o A366536 def A366536(n): %o A366536 def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1)) %o A366536 m, k = n, f(n) %o A366536 while m != k: %o A366536 m, k = k, f(k) %o A366536 return udivisor_count(m) # _Chai Wah Wu_, Aug 05 2024 %Y A366536 Cf. A004709, A005117, A034444, A072048, A077610, A358040, A366440, A366537. %Y A366536 Similar sequences: A366534, A366538. %K A366536 nonn,easy %O A366536 1,2 %A A366536 _Amiram Eldar_, Oct 12 2023