cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366537 The sum of unitary divisors of the cubefree numbers (A004709).

This page as a plain text file.
%I A366537 #19 Apr 26 2025 21:35:05
%S A366537 1,3,4,5,6,12,8,10,18,12,20,14,24,24,18,30,20,30,32,36,24,26,42,40,30,
%T A366537 72,32,48,54,48,50,38,60,56,42,96,44,60,60,72,48,50,78,72,70,54,72,80,
%U A366537 90,60,120,62,96,80,84,144,68,90,96,144,72,74,114,104,100,96
%N A366537 The sum of unitary divisors of the cubefree numbers (A004709).
%H A366537 Amiram Eldar, <a href="/A366537/b366537.txt">Table of n, a(n) for n = 1..10000</a>
%F A366537 a(n) = A034448(A004709(n)).
%F A366537 Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(3)^2 * Product_{p prime} (1 + 1/p^2 - 2/p^3 + 1/p^4 - 1/p^5) = 1.665430860774244601005... .
%F A366537 The asymptotic mean of the unitary abundancy index of the cubefree numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A004709(k) = c / zeta(3) = 1.38548421160152785073... .
%t A366537 s[n_] := Module[{f = FactorInteger[n], e}, e = f[[;;, 2]]; If[AllTrue[e, # < 3 &], Times @@ (1 + Power @@@ f), Nothing]]; s[1] = 1; Array[s, 100]
%o A366537 (PARI) lista(max) = for(k = 1, max, my(f = factor(k), e = f[, 2], iscubefree = 1); for(i = 1, #e, if(e[i] > 2, iscubefree = 0; break)); if(iscubefree, print1(prod(i = 1, #e, 1 + f[i, 1]^e[i]), ", ")));
%o A366537 (Python)
%o A366537 from sympy.ntheory.factor_ import udivisor_sigma
%o A366537 from sympy import mobius, integer_nthroot
%o A366537 def A366537(n):
%o A366537     def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
%o A366537     m, k = n, f(n)
%o A366537     while m != k:
%o A366537         m, k = k, f(k)
%o A366537     return udivisor_sigma(m) # _Chai Wah Wu_, Aug 05 2024
%Y A366537 Cf. A002117, A004709, A005117, A034448, A062822, A077610, A358040, A366440, A366536.
%Y A366537 Similar sequences: A034676, A366535, A366539.
%K A366537 nonn,easy
%O A366537 1,2
%A A366537 _Amiram Eldar_, Oct 12 2023