cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366539 The sum of unitary divisors of the exponentially 2^n-numbers (A138302).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 26, 42, 40, 30, 72, 32, 48, 54, 48, 50, 38, 60, 56, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 72, 80, 90, 60, 120, 62, 96, 80, 84, 144, 68, 90, 96, 144, 72, 74, 114, 104
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Comments

Also the sum of infinitary divisors of the terms of A138302, since A138302 is also the sequence of numbers whose sets of unitary divisors (A077610) and infinitary divisors (A077609) coincide.

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], e}, e = f[[;;, 2]]; If[AllTrue[e, # == 2^IntegerExponent[#, 2] &], Times @@ (1 + Power @@@ f), Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    lista(max) = for(k = 1, max, my(f = factor(k), e = f[, 2], is = 1); for(i = 1, #e, if(e[i] >> valuation(e[i], 2) > 1, is = 0; break)); if(is, print1(prod(i = 1, #e, 1 + f[i, 1]^e[i]), ", ")));

Formula

a(n) = A034448(A138302(n)).
a(n) = A049417(A138302(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (1/d^2) * Product_{p prime} f(1/p) = 1.58107339851877782285..., d = A271727 is the asymptotic density of A138302, and f(x) = 1 + x^2 + 2 * Sum_{k>=2} (x^(2^k)-x^(2^k+1)).
The asymptotic mean of the unitary abundancy index of A138302: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A138302(k) = c * d = 1.37948208055913856387... .