This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366551 #13 May 09 2025 17:13:26 %S A366551 1,32,513,4407,21393,86620,242057,673623,1467642,3107487,5836467, %T A366551 11108595,18102935,31327359,48505904,74802671,110297111,166721570, %U A366551 230270840 %N A366551 Number of distinct characteristic polynomials for 3 X 3 matrices with entries from {0, 1, ..., n}. %H A366551 Robert P. P. McKone, <a href="/A366551/a366551_1.txt">The distinct characteristic polynomials for a(0)-a(6)</a>. %F A366551 a(n) <= A366158(n) * A227776(n) * A016777(n). %t A366551 mat[n_Integer?Positive] := mat[n] = Array[m, {n, n}]; flatMat[n_Integer?Positive] := flatMat[n] = Flatten[mat[n]]; charPolyMat[n_Integer?Positive] := charPolyMat[n] = FullSimplify[CoefficientList[Expand[CharacteristicPolynomial[mat[n], x]], x]]; a[d_Integer?Positive, 0] = 1; a[d_Integer?Positive, n_Integer?Positive] := a[d, n] = Length[DeleteDuplicates[Flatten[Table[Evaluate[charPolyMat[d]], ##] & @@ Table[{flatMat[d][[i]], 0, n}, {i, 1, d^2}], d^2 - 1]]]; Table[a[3, n], {n, 0, 7}] %o A366551 (Sage) %o A366551 import itertools %o A366551 def a(n): %o A366551 ans, W = set(), itertools.product(range(n+1), repeat=9) %o A366551 for w in W: ans.add(Matrix(ZZ, 3, 3, w).charpoly()) %o A366551 return len(ans) # _Robin Visser_, May 08 2025 %Y A366551 Cf. A366448 (2 X 2 matrices), A367978 (4 X 4 matrices). %Y A366551 Cf. A366158 (determinants), A227776 (2nd order coefficients), A016777 (traces). %Y A366551 Cf. A272659. %K A366551 nonn,more %O A366551 0,2 %A A366551 _Robert P. P. McKone_, Oct 13 2023 %E A366551 a(12)-a(18) from _Robin Visser_, May 08 2025