cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366581 a(n) = phi(p(n)), where phi is Euler's totient function (A000010) and p(n) is the number of partitions of n (A000041).

This page as a plain text file.
%I A366581 #13 Oct 15 2023 08:16:05
%S A366581 1,1,1,2,4,6,10,8,10,8,12,24,60,100,72,80,120,180,240,168,360,240,332,
%T A366581 1000,720,880,672,1008,1560,3280,1864,3100,4840,5544,4920,8800,17976,
%U A366581 16800,18480,12960,10584,23040,24160,37800,57600,43440,34560,49896,84144
%N A366581 a(n) = phi(p(n)), where phi is Euler's totient function (A000010) and p(n) is the number of partitions of n (A000041).
%F A366581 a(n) = A000010(A000041(n)).
%t A366581 Table[EulerPhi[PartitionsP[n]], {n, 0, 48}] (* _Paul F. Marrero Romero_, Oct 14 2023 *)
%o A366581 (PARI) a(n) = eulerphi(numbpart(n)); \\ _Michel Marcus_, Oct 14 2023
%Y A366581 Cf. A000041, A000010, A087175, A139041.
%K A366581 nonn
%O A366581 0,4
%A A366581 _Sean A. Irvine_, Oct 13 2023