cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A374785 Numbers whose unitary divisors have a mean unitary abundancy index that is larger than 2.

Original entry on oeis.org

223092870, 281291010, 300690390, 6469693230, 6915878970, 8254436190, 8720021310, 9146807670, 9592993410, 10407767370, 10485364890, 10555815270, 11125544430, 11532931410, 11797675890, 11823922110, 12095513430, 12328305990, 12598876290, 12929686770, 13162479330
Offset: 1

Views

Author

Amiram Eldar, Jul 20 2024

Keywords

Comments

Numbers k such that A374783(k)/A374784(k) > 2.
The least odd term is A070826(43) = 5.154... * 10^74, and the least term that is coprime to 6 is Product_{k=3..219} prime(k) = 1.0459... * 10^571.
The least nonsquarefree (A013929) term is a(613) = 148802944290 = 2 * 3 * 5 * 7 * 11 * 13 * 17 *19 * 23^2 * 29.
All the terms are nonpowerful numbers (A052485). For powerful numbers (A001694) k, A374783/(k)/A374784(k) < Product_{p prime} (1 + 1/(2*p)) = 1.242534... (A366586).

Examples

			223092870 is a term since A374783(223092870)/A374784(223092870) = 666225/330752 = 2.014... > 2.
		

Crossrefs

Subsequence of A052485.
Similar sequences: A245214, A374788.

Programs

  • Mathematica
    f[p_, e_] := 1 + 1/(2*p^e); r[1] = 1; r[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[4*10^8], s[#] > 2 &]
  • PARI
    is(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + 1/(2*f[i,1]^f[i,2])) > 2;}

Formula

A001221(a(n)) >= 9.

A366587 Decimal expansion of the asymptotic mean of the ratio between the number of squarefree divisors and the number of cubefree divisors.

Original entry on oeis.org

8, 5, 6, 2, 0, 0, 5, 0, 7, 9, 3, 7, 4, 7, 7, 1, 4, 9, 3, 9, 7, 2, 8, 1, 0, 8, 9, 5, 9, 5, 1, 6, 0, 4, 0, 4, 9, 8, 8, 4, 9, 0, 3, 1, 5, 8, 4, 1, 3, 2, 7, 1, 3, 1, 8, 5, 9, 6, 9, 5, 5, 8, 0, 3, 4, 0, 3, 8, 6, 6, 0, 8, 9, 6, 0, 1, 1, 9, 5, 9, 2, 1, 0, 5, 5, 5, 3, 0, 9, 0, 7, 8, 0, 9, 2, 3, 1, 4, 3, 4, 9, 2, 7, 3, 9
Offset: 0

Views

Author

Amiram Eldar, Oct 14 2023

Keywords

Comments

For a positive integer k the ratio between the number of squarefree divisors and the number of cubefree divisors is r(k) = A034444(k)/A073184(k).
r(k) <= 1 with equality if and only if k is squarefree (A005117).
The asymptotic second raw moment is = Product_{p prime} (1 - 5/(9*p^2)) = 0.76780883634140395932... and the asymptotic standard deviation is 0.29730736888962774256... .

Examples

			0.85620050793747714939728108959516040498849031584132...
		

Crossrefs

Similar constants: A307869, A308042, A308043, A358659, A361059, A361060, A361061, A361062, A366586 (mean of the inverse ratio).

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{0, 1/3}, {0, -(2/3)}, m]; RealDigits[Exp[NSum[Indexed[c, n] * PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 105][[1]]
  • PARI
    prodeulerrat(1 - 1/(3*p^2))

Formula

Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A034444(k)/A073184(k).
Equals Product_{p prime} (1 - 1/(3*p^2)).
In general, the asymptotic mean of the ratio between the number of k-free divisors and the number of (k-1)-free divisors, for k >= 3, is Product_{p prime} (1 - 1/(k*p^2)).
Showing 1-2 of 2 results.