cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366592 G.f. A(x) satisfies A(x) = 1 + x^4*(1+x)^2*A(x)^3.

This page as a plain text file.
%I A366592 #11 Oct 14 2023 13:20:09
%S A366592 1,0,0,0,1,2,1,0,3,12,18,12,15,72,180,240,235,512,1552,3080,4123,5810,
%T A366592 13825,33200,58813,85932,151578,346920,726897,1242234,2025177,3952704,
%U A366592 8509875,16525872,28565064,50849280,102266019,208932438,391951131,699037248,1313756457
%N A366592 G.f. A(x) satisfies A(x) = 1 + x^4*(1+x)^2*A(x)^3.
%F A366592 a(n) = Sum_{k=0..floor(n/4)} binomial(2*k,n-4*k) * binomial(3*k,k)/(2*k+1).
%o A366592 (PARI) a(n) = sum(k=0, n\4, binomial(2*k, n-4*k)*binomial(3*k, k)/(2*k+1));
%Y A366592 Cf. A366221, A366590, A366591.
%Y A366592 Cf. A366556.
%K A366592 nonn
%O A366592 0,6
%A A366592 _Seiichi Manyama_, Oct 14 2023