This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366596 #103 Jan 16 2024 07:00:28 %S A366596 0,7,77,777,7777,77777,111111,222222,333333,444444,555555,666666, %T A366596 777777,888888,999999,7777777,77777777,777777777,7777777777, %U A366596 77777777777,111111111111,222222222222,333333333333,444444444444,555555555555,666666666666,777777777777 %N A366596 Repdigit numbers that are divisible by 7. %C A366596 7 divides a repdigit iff it consists of only digit 7, or has length 6*k (for any digit). %C A366596 Repdigit remainders A010785(k) mod 7 have period 54. - _Karl-Heinz Hofmann_, Dec 04 2023 %H A366596 Karl-Heinz Hofmann, <a href="/A366596/b366596.txt">Table of n, a(n) for n = 1..2329</a> %H A366596 <a href="/index/Rec#order_28">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,1000001,0,0,0,0,0,0,0,0,0,0,0,0,0,-1000000). %F A366596 From _Karl-Heinz Hofmann_, Dec 04 2023: (Start) %F A366596 a(n) = A010785(floor((n-2)/14)*54 + ((n-2) mod 14) + 41), for (n-2) mod 14 > 4. %F A366596 a(n) = (10^(6*floor((n-2)/14) + 6)-1)/9*(((n-2) mod 14)-4), for (n-2) mod 14 > 4. %F A366596 a(n) = A010785(floor((n-2)/14)*54 + ((n-2) mod 14)*9 + 7), for (n-2) mod 14 <= 4. %F A366596 a(n) = (10^(6*floor((n-2)/14) + 1 + ((n-2) mod 14))-1)/9*7, for (n-2) mod 14 <= 4. %F A366596 (End) %o A366596 (PARI) r(n) = 10^((n+8)\9)\9*((n-1)%9+1); \\ A010785 %o A366596 lista(nn) = select(x->!(x%7), vector(nn, k, r(k-1))); \\ _Michel Marcus_, Oct 26 2023 %o A366596 (Python) %o A366596 def A366596(n): %o A366596 digitlen, digit = (n+12)//14*6, (n+12)%14-4 %o A366596 if digit < 1: digitlen += digit - 1; digit = 7 %o A366596 return 10**digitlen // 9 * digit # _Karl-Heinz Hofmann_, Dec 04 2023 %Y A366596 Intersection of A008589 and A010785. %Y A366596 Cf. A002281 (a subsequence). %Y A366596 Cf. A305322 (divisor 3), A002279 (divisor 5), A083118 (the impossible divisors). %K A366596 nonn,base,easy %O A366596 1,2 %A A366596 _Kritsada Moomuang_, Oct 14 2023