This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366597 #9 Nov 12 2023 22:00:09 %S A366597 0,2,2,1,2,1,2,2,0,4,1,2,2,2,4,0,1,2,0,4,7,0,0,2,2,2,2,9,2,0,4,1,2,1, %T A366597 4,11,2,0,4,6,2,2,2,14,6,0,4,9,2,0,0,1,2,0,4,17,6,0,2,19,4,0,0,0,2,2, %U A366597 4,2,16,10,1,6,17,14,0,0,0,4,1,2,0,4,23 %N A366597 Irregular triangular array, read by rows: T(n,k) = number of vertices (partitions) that have degree k in the distance graph of the partitions of n, for k = 1..A366429(n). %C A366597 The distance graph of the partitions of n is defined in A366156. %e A366597 First fourteen rows: %e A366597 1 %e A366597 2 %e A366597 2 1 %e A366597 2 1 2 %e A366597 2 0 4 1 %e A366597 2 2 2 4 0 1 %e A366597 2 0 4 7 0 0 2 %e A366597 2 2 2 9 2 0 4 1 %e A366597 2 1 4 11 2 0 4 6 %e A366597 2 2 2 14 6 0 4 9 2 0 0 1 %e A366597 2 0 4 17 6 0 2 19 4 0 0 0 2 %e A366597 2 4 2 16 10 1 6 17 14 0 0 0 4 1 %e A366597 2 0 4 23 10 0 2 27 22 1 0 0 4 6 %e A366597 2 2 2 22 18 2 4 27 32 4 0 0 6 12 2 %e A366597 Enumerate the 7 partitions (vertices) of 5 as follows: %e A366597 1: 5 %e A366597 2: 4,1 %e A366597 3: 3,2 %e A366597 4: 3,1,1 %e A366597 5: 2,2,1 %e A366597 6: 2,1,1,1 %e A366597 7: 1,1,1,1,1 %e A366597 Call q a neighbor of p if d(p,q)=2, where d is the distance function in A366156. %e A366597 The set of neighbors for vertex k, for k = 1..7, is given by %e A366597 vertex 1: {2} %e A366597 vertex 2: {1,3,4} %e A366597 vertex 3: {2,4,5} %e A366597 vertex 4: {2,3,5,6} %e A366597 vertex 5: {3,4,6} %e A366597 vertex 6: {4,5,7} %e A366597 vertex 7: {6} %e A366597 The number of vertices having degrees 1,2,3,4 are 2,0,4,1, respectively, so that row 5 is 2 0 4 1. %t A366597 c[n_] := PartitionsP[n]; q[n_, k_] := q[n, k] = IntegerPartitions[n][[k]]; %t A366597 r[n_, k_] := r[n, k] = Join[q[n, k], ConstantArray[0, n - Length[q[n, k]]]]; %t A366597 d[u_, v_] := Total[Abs[u - v]]; %t A366597 s[n_, k_] := Select[Range[c[n]], d[r[n, k], r[n, #]] == 2 &]; %t A366597 s1[n_] := s1[n] = Table[s[n, k], {k, 1, c[n]}]; %t A366597 m[n_] := m[n] = Map[Length, s1[n]]; %t A366597 m1[n_] := m1[n] = Max[m[n]]; (* A366429 *) %t A366597 t1 = Join[{1}, Table[Count[m[n], i], {n, 2, 15}, {i, 1, m1[n]}]] %t A366597 Column[t1] %t A366597 Flatten[t1] %Y A366597 Cf. A000041 (row sums), A366429 (row lengths), A366598 (row maxima). %K A366597 nonn,tabf %O A366597 1,2 %A A366597 _Clark Kimberling_, Oct 16 2023