This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366598 #6 Nov 12 2023 22:00:25 %S A366598 1,2,2,2,4,4,7,9,11,14,19,17,27,32,50,62,82,94,132,138,176,198,238, %T A366598 288,368 %N A366598 a(n) = greatest number of vertices having the same degree in the distance graph of the partitions of n. %C A366598 The distance graph of the partitions of n is defined in A366156. %e A366598 Enumerate the 7 partitions (= vertices) of 5 as follows: %e A366598 1: 5 %e A366598 2: 4,1 %e A366598 3: 3,2 %e A366598 4: 3,1,1 %e A366598 5: 2,2,1 %e A366598 6: 2,1,1,1 %e A366598 7: 1,1,1,1,1 %e A366598 Call q a neighbor of p if d(p,q)=2. %e A366598 The set of neighbors for vertex k, for k = 1..7, is given by %e A366598 vertex 1: {2} %e A366598 vertex 2: {1,3,4} %e A366598 vertex 3: {2,4,5} %e A366598 vertex 4: {2,3,5,6} %e A366598 vertex 5: {3,4,6} %e A366598 vertex 6: {4,5,7} %e A366598 vertex 7: {6} %e A366598 The number of vertices having degrees 1,2,3,4 are 2,0,4,1, respectively; the greatest of these is 4, so that a(5) = 4. %t A366598 c[n_] := PartitionsP[n]; q[n_, k_] := q[n, k] = IntegerPartitions[n][[k]]; %t A366598 r[n_, k_] := r[n, k] = Join[q[n, k], ConstantArray[0, n - Length[q[n, k]]]]; %t A366598 d[u_, v_] := Total[Abs[u - v]]; %t A366598 s[n_, k_] := Select[Range[c[n]], d[r[n, k], r[n, #]] == 2 &] %t A366598 s1[n_] := s1[n] = Table[s[n, k], {k, 1, c[n]}] %t A366598 m[n_] := m[n] = Map[Length, s1[n]] %t A366598 m1[n_] := m1[n] = Max[m[n]]; (* A366429 *) %t A366598 t1 = Join[{1}, Table[Count[m[n], i], {n, 2, 25}, {i, 1, m1[n]}]] %t A366598 Map[Max, t1] %Y A366598 Cf. A000041, A366156, A366429. %K A366598 nonn,more %O A366598 1,2 %A A366598 _Clark Kimberling_, Oct 25 2023