A366614 Irregular triangular array, read by rows: row n gives the numbers max(p) - min(p), in nondecreasing order, where p ranges through the strict partitions p of n.
0, 0, 0, 1, 0, 2, 0, 1, 3, 0, 2, 2, 4, 0, 1, 3, 3, 5, 0, 2, 3, 4, 4, 6, 0, 1, 2, 3, 4, 5, 5, 7, 0, 2, 3, 3, 4, 4, 5, 6, 6, 8, 0, 1, 3, 3, 4, 4, 5, 5, 6, 7, 7, 9, 0, 2, 2, 4, 4, 4, 5, 5, 5, 6, 6, 7, 8, 8, 10, 0, 1, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 9, 9
Offset: 1
Examples
First twelve rows: 0 0 0 1 0 2 0 1 3 0 2 2 4 0 1 3 3 5 0 2 3 4 4 6 0 1 2 3 4 5 5 7 0 2 3 3 4 4 5 6 6 8 0 1 3 3 4 4 5 5 6 7 7 9 0 2 2 4 4 4 5 5 5 6 6 7 8 8 10 The strict partitions p of 8 are 8, 71, 62, 53, 521, 431, for which max(p)-min(p) are the numbers 0, 6, 4, 2, 4, 3, or, in nondecreasing order, 0, 2, 3, 4, 4, 6, as in row 8.
Programs
-
Mathematica
z = 20; d[n_] := d[n] = Select[IntegerPartitions[n], DeleteDuplicates[#] == # &]; p[n_, k_] := p[n, k] = d[n][[k]]; t = Table[Max[p[n, k]] - Min[p[n, k]], {n, 1, z}, {k, 1, PartitionsQ[n]}] m = Map[Sort, t] Column[m] Flatten[m]