cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366643 a(n) is the number of divisors of n that are coprime to the terms of A366642.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 4, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    seq[max_] := With[{ps = {2, 3, 5, 149, 10771}}, If[max <= Max[ps], f[p_, e_] := If[MemberQ[ps, p], 1, e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, max], Print["Add to ps more terms from A366642"]]]; seq[10^6]

Formula

Multiplicative with a(p^e) = 1 if p is a term of A366642, and e+1 otherwise.
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000005(k) = 1/2.
Dirichlet g.f.: zeta(s)^2 * Product_{p in A366642} (1 - 1/p^s).
Sum_{k=1..n} a(k) ~ c * n * log(n), where c = Product_{p in A366642} (1 - 1/p) = 0.26485234983834588444... .