This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366644 #14 Nov 12 2023 21:44:00 %S A366644 1693,3329,3469,13523,23899,24551,33589,37579,44221,47459,75659,81929, %T A366644 91009,103981,136621,195493,365293,637669,652573,787513,842341,902449, %U A366644 1181053,1290319,1291603,1349683,1802641,1858891,1869709,1870441,1978411,2295121,2414771 %N A366644 Primes p such that p + q +- 1 and p^3 + q^3 +- 1 are twin prime pairs, where q = nextprime(p). %e A366644 1693 is in the sequence since %e A366644 1693 + 1697 - 1 = 3389 is prime, %e A366644 1693 + 1697 + 1 = 3391 is prime, %e A366644 1693^3 + 1697^3 - 1 = 9739595429 is prime, and %e A366644 1693^3 + 1697^3 + 1 = 9739595431 is prime. %e A366644 3329 is in the sequence since %e A366644 3329 + 3331 - 1 = 6659 is prime, %e A366644 3329 + 3331 + 1 = 6661 is prime, %e A366644 3329^3 + 3331^3 - 1 = 73852093979 is prime, and %e A366644 3329^3 + 3331^3 + 1 = 73852093981 is prime. %o A366644 (PARI) isok(p)={if(isprime(p), my(q=nextprime(p+1), y=p+q, z=p^3+q^3); isprime(y-1) && isprime(y+1) && isprime(z-1) && isprime(z+1), 0)} %o A366644 { forprime(p=1, 3*10^6, if(isok(p), print1(p, ", "))) } \\ _Andrew Howroyd_, Oct 15 2023 %Y A366644 Cf. A000040. %K A366644 nonn %O A366644 1,1 %A A366644 _Najeem Ziauddin_, Oct 15 2023