cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366693 Minimal number of primorials or their negatives that add to n.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 1, 2, 2, 3, 3, 3, 2, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 2, 3, 3, 3, 2, 2, 1, 2, 2, 3, 3, 3, 2, 3, 3, 4, 4, 4, 3, 4, 4, 5, 5, 5, 4, 5, 5, 5, 4, 4, 3, 4, 4, 4, 3, 3, 2, 3, 3, 4, 4, 4, 3, 4, 4, 5, 5, 5, 4, 5, 5, 6, 6, 6, 5, 6, 6, 6, 5, 5, 4, 5, 5, 5
Offset: 0

Views

Author

James C. McMahon, Oct 16 2023

Keywords

Examples

			5 = 6 - 1 (two primorials), so a(5) = 2.
27 = 30 - 2 - 1 (three primorials), so a(27) = 3.
		

Crossrefs

Programs

  • Mathematica
    a[nthPrimorials_Integer?NonNegative (* Increase nthPrimorials to use more positive and negative primorials in sum *), numberOfPrimorials_Integer?NonNegative (* Increase numberOfPrimorials to increase cap of minimal number of primorials *)] := a[nthPrimorials, numberOfPrimorials] = Module[{A002110, f, h, s}, A002110[nthPrimorials] = Join[{1}, Denominator[Accumulate[1/Prime[Range[nthPrimorials]]]]]; A002110[n_] := A002110[n] = Join[{1}, Denominator[Accumulate[1/Prime[Range[n]]]]]; f[n_] := f[n] = Flatten[Table[p*r, {p, A002110[n - 1]}, {r, {1, -1}}]]; h[n_, u_] := h[n, u] = Sort[Select[DeleteDuplicates[Flatten[Table[Sum[p[j], {j, 1, u}], ##] & @@ Table[{p[j], f[n]}, {j, 1, u}]]], # > 0 &]]; s = Table[Infinity, {A002110[nthPrimorials][[-1]]}]; Monitor[Do[If[s[[k]] > k, s[[k]] = l], {l, 1, numberOfPrimorials}, {k, h[nthPrimorials, l]}], {l, k}]; s = Join[{0}, s]; If[MemberQ[s, Infinity], s[[1 ;; Position[s, Infinity][[1, 1]] - 1]], s]]; a[6, 6] (* Robert P. P. McKone, Oct 21 2023 *)