A366704 Number of sphinx tilings of T(n+12) with a central T(n) defect where T(k) is an equilateral triangle with side length k.
830, 216, 144, 13760, 396, 144, 185348, 576, 144, 3222390, 756, 144, 57614324, 936, 144, 1033400616, 1116, 144, 18543135720, 1296, 144
Offset: 0
Links
- Eurekaalert, Riddles of the sphinx, 2024.
- Greg Huber, Craig Knecht, Walter Trump, and Robert M. Ziff, Riddles of the sphinx tilings, arXiv:2304.14388 [cond-mat.stat-mech], 2023.
- Craig Knecht, Chiral color coding of the sphinx tiles in the fundamental polyads.
- Craig Knecht, Example for the sequence.
- Craig Knecht, Hemisphinx infinite polyad series.
- Craig Knecht, Infinite polyad series construction ideas.
- Craig Knecht, Infinite sphinx fundamental polyad series.
- Craig Knecht, Insert tiles in T12.
- Craig Knecht, Mapping inserts and polyads in frames with 144 tilings.
- Craig Knecht, Order 8 fundamental polyads.
- Craig Knecht, Order 12 polyad.
- Craig Knecht, Polyad overlap.
Crossrefs
Cf. A279887.
Formula
Conjecture: a(3*k + 2) = 144.
Conjecture: a(3*k + 1) = 180*k + 216.
Extensions
a(12)-a(20) from Walter Trump, Oct 20 2023
Comments