cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366714 Number of divisors of 12^n+1.

This page as a plain text file.
%I A366714 #11 Apr 20 2025 20:12:44
%S A366714 2,2,4,8,4,4,8,8,8,32,12,4,16,24,16,128,4,8,32,16,64,384,64,16,64,64,
%T A366714 32,1024,8,8,48,8,4,512,16,32,128,16,32,1536,16,32,64,32,16,4096,8,32,
%U A366714 32,32,512,512,32,32,1024,128,512,1536,192,64,1024,32,64
%N A366714 Number of divisors of 12^n+1.
%H A366714 Max Alekseyev, <a href="/A366714/b366714.txt">Table of n, a(n) for n = 0..306</a>
%F A366714 a(n) = sigma0(12^n+1) = A000005(A178248(n)).
%e A366714 a(4)=4 because 12^4+1 has divisors {1, 89, 233, 20737}.
%p A366714 a:=n->numtheory[tau](12^n+1):
%p A366714 seq(a(n), n=0..100);
%t A366714 DivisorSigma[0, 12^Range[0, 70] + 1] (* _Paolo Xausa_, Apr 20 2025 *)
%o A366714 (PARI) a(n) = numdiv(12^n+1);
%Y A366714 Cf. A178248, A000005, A046798, A344897, A366709, A366712, A366713, A366715, A366716, A366719, A366720, A366688.
%K A366714 nonn
%O A366714 0,1
%A A366714 _Sean A. Irvine_, Oct 17 2023